

Miracle cure leaves researchers wanting more. CERN researchers continue their search for new physics while prominent theorists cite need for beyond Standard Model phenomenology. "Where's the beef?," asks John Ellis, "There has got to be more to this puzzle."

In the LHC News:

New paths to new physics & WAY more data ahead

October, 2013

But is it a Higgs boson??

A Simplifying Illustration

or (g/2v)^{1/2}

Higgs Couplings: 2013 vs 2022

Fast forward to today

The Standard Model Succeeds Survives

Get your t-shirt!

$$\mathcal{L} = -\frac{1}{2} \operatorname{Tr} G_{\mu\nu} G^{\mu\nu} - \frac{1}{2} \operatorname{Tr} W_{\mu\nu} W^{\mu\nu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}
+ (D_{\mu}\phi)^{\dagger} D^{\mu}\phi + \mu^{2}\phi^{\dagger}\phi - \frac{1}{2}\lambda \left(\phi^{\dagger}\phi\right)^{2}
+ \sum_{f=1}^{3} \left(\bar{\ell}_{L}^{f} i \not \!\!\!D \ell_{L}^{f} + \bar{\ell}_{R}^{f} i \not \!\!D \ell_{R}^{f} + \bar{q}_{L}^{f} i \not \!\!D q_{L}^{f} + \bar{d}_{R}^{f} i \not \!\!D d_{R}^{f} + \bar{u}_{R}^{f} i \not \!\!D u_{R}^{f}\right)
- \sum_{f=1}^{3} y_{\ell}^{f} \left(\bar{\ell}_{L}^{f} \phi \ell_{R}^{f} + \bar{\ell}_{R}^{f} \phi^{\dagger} \ell_{L}^{f}\right)
- \sum_{f,g=1}^{3} \left(y_{d}^{fg} \bar{q}_{L}^{f} \phi d_{R}^{g} + (y_{d}^{fg})^{*} \bar{d}_{R}^{g} \phi^{\dagger} q_{L}^{f} + y_{u}^{fg} \bar{q}_{L}^{f} \tilde{\phi} u_{R}^{g} + (y_{u}^{fg})^{*} \bar{u}_{R}^{g} \tilde{\phi}^{\dagger} q_{L}^{f}\right),$$

Muon Anomalous Magnetic Moment

An exposition of precision

Puzzles in the Standard Model

Higgs Mass Radiative Corrections

Getting loopy?

$$V(\phi) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$$

Higgs boson mass

Vacuum stability

$$V(\phi) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$$

$$M_H^2 = M_{\text{Tree}}^2 + M_{\text{Loops}}^2$$

$$\lambda_H = \lambda_{\text{Tree}} + \lambda_{\text{Loops}}$$

$$V(\phi) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$$

$$M_H^2 = M_{\mathrm{tree}}^2 + (M_H^2) +$$

$$\delta M^2 \propto {a \over 16\pi^2} g^2 \Lambda^2$$

$$V(\phi) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$$

$$M_H^2 = M_{\mathrm{tree}}^2 + (\underline{\underline{\underline{H}}}_H) + (\underline{\underline{\underline{\underline{H}}}}_H) + (\underline{\underline{\underline{\underline{\underline{H}}}}}_H) + (\underline{\underline{\underline{\underline{H}}}}_H) + (\underline{\underline{\underline{H}}}_H) + (\underline{\underline{\underline{\underline{H}}}}_H) + (\underline{\underline{\underline{H}}}_H) + (\underline{\underline{\underline{\underline{H}}}_H) + (\underline{\underline{\underline{H}}}_H) + (\underline{\underline{\underline{H}}}_H) + (\underline{\underline{\underline{H}}}_H) + (\underline$$

The Language of the Standard Model

Is this the truth or just a convenient description?

$$\mathcal{L} = -\frac{1}{2} \operatorname{Tr} G_{\mu\nu} G^{\mu\nu} - \frac{1}{2} \operatorname{Tr} W_{\mu\nu} W^{\mu\nu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}
+ (D_{\mu}\phi)^{\dagger} D^{\mu}\phi + \mu^{2}\phi^{\dagger}\phi - \frac{1}{2}\lambda \left(\phi^{\dagger}\phi\right)^{2}
+ \sum_{f=1}^{3} \left(\bar{\ell}_{L}^{f} i \not D \ell_{L}^{f} + \bar{\ell}_{R}^{f} i \not D \ell_{R}^{f} + \bar{q}_{L}^{f} i \not D q_{L}^{f} + \bar{d}_{R}^{f} i \not D d_{R}^{f} + \bar{u}_{R}^{f} i \not D u_{R}^{f}\right)
- \sum_{f=1}^{3} y_{\ell}^{f} \left(\bar{\ell}_{L}^{f} \phi \ell_{R}^{f} + \bar{\ell}_{R}^{f} \phi^{\dagger} \ell_{L}^{f}\right)
- \sum_{f,g=1}^{3} \left(y_{d}^{fg} \bar{q}_{L}^{f} \phi d_{R}^{g} + (y_{d}^{fg})^{*} \bar{d}_{R}^{g} \phi^{\dagger} q_{L}^{f} + y_{u}^{fg} \bar{q}_{L}^{f} \tilde{\phi} u_{R}^{g} + (y_{u}^{fg})^{*} \bar{u}_{R}^{g} \tilde{\phi}^{\dagger} q_{L}^{f}\right),$$

JUST SO STORIES **AUF V** ADE How the Elephant got his trunk RUDYARD KIPLING

A historical perspective

Was it a right or a left turn at Lambda QCD??

Atom Land:
A Guided Tour Through the
Strange (and Impossibly
Small) World of Particle
Physics

By Jon Butterworth UC London

ISBN: 978-1615193738

Mass Resonances

A historic guide to discovery

$$R = \frac{\sigma(e^+e^- \to q\bar{q})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

The November Revolution

November 1974: Discovery of the Charmed Quark

VOLUME 33, NUMBER 23

PHYSICAL REVIEW LETTERS

2 DECEMBER 1974

Experimental Observation of a Heavy Particle J†

J. J. Aubert, U. Becker, P. J. Biggs, J. Burger, M. Chen, G. Everhart, P. Goldhagen, J. Leong, T. McCorriston, T. G. Rhoades, M. Rohde, Samuel C. C. Ting, and Sau Lan Wu Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

and

Y. Y. Lee

Brookhaven National Laboratory, Upton, New York 11973 (Received 12 November 1974)

We report the observation of a heavy particle J, with mass m=3.1 GeV and width approximately zero. The observation was made from the reaction $p+\mathrm{Be}\to e^++e^-+x$ by measuring the e^+e^- mass spectrum with a precise pair spectrometer at the Brookhaven National Laboratory's 30-GeV alternating-gradient synchrotron.

Discovery of a Narrow Resonance in e + e - Annihilation*

J.-E. Augustin,† A. M. Boyarski, M. Breidenbach, F. Bulos, J. T. Dakin, G. J. Feldman, G. E. Fischer, D. Fryberger, G. Hanson, B. Jean-Marie,† R. R. Larsen, V. Lüth, H. L. Lynch, D. Lyon, C. C. Morehouse, J. M. Paterson, M. L. Perl, B. Richter, P. Rapidis, R. F. Schwitters, W. M. Tanenbaum,

and F. Vannucci‡

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

and

G. S. Abrams, D. Briggs, W. Chinowsky, C. E. Friedberg, G. Goldhaber, R. J. Hollebeek, J. A. Kadyk, B. Lulu, F. Pierre, & G. H. Trilling, J. S. Whitaker, J. Wiss, and J. E. Zipse

Lawrence Berkeley Laboratory and Department of Physics, University of California, Berkeley, California 94720 (Received 13 November 1974)

We have observed a very sharp peak in the cross section for $e^+e^- \rightarrow \text{hadrons}$, e^+e^- , and possibly $\mu^+\mu^-$ at a center-of-mass energy of 3.105 ± 0.003 GeV. The upper limit to the full width at half-maximum is 1.3 MeV.

Emerging Landscape

Charm is a game-changer!

"New" phenomena?

Structure as a guide to the underlying theory.

The Livingston Line

Particle colliders as engines of discovery

Large Hadron Collider (2009 - Present)

proton - proton & heavy-ion collisions

collision energy: 7-14 TeV

A Roadmap

Guide to enhancing discovery potential

Enhancements to search potential via targeted model tests

- Models with Heavy Resonances
- Combined searches

Upgrades to the ATLAS triggering capabilities & Jet Identification

• Phase-1: 2019-2022

• HL-LHC: 2026-2028

Programmatic foundation of searches for new physics at ATLAS

• Searches for heavy resonances

So where's the new physics hiding?

No, really, where is it?

Heavy Resonances

A window to new physics

A "Simple" Relationship

Cross Section:

QM probability to
create this state. Set
by QM, not optimizable
for a given state.

Number of events expected to be observed

Luminosity:
How much data
you've collected.

Acceptance:

How many events pass your selection criteria out of the total produced?

Invariant Mass

Invariant Mass

Example: Two-Higgs Doublet Models

Positives:

- ✓ Provides additional degrees of freedom in the Higgs sector
 - 5 Higgs bosons!
 - A, H, h, H[±]
- ✓ Potential to ease naturalness problem
- ✓ Potentially allows flavorchanging neutral currents

Negatives:

- Complicates Higgs boson physics
- Additional resonances haven't been found yet
- Likely doesn't explain some anomalies seen thus far

Di-Boson Resonances

Di-Boson Resonances

The De

Sometimes

0.1- 1	Resolved			Merged			
0-lepton	1 b-tag	2 b-tag	3+ b-tag	1 <i>b</i> -tag	2 b-tag	1 b-tag	2~b-tag
		2 0-146	o r o tag		2 0-146	add. b -tag	add. b -tag
$t\bar{t}$	22900 ± 890	6640 ± 180	1000 ± 34	1650 ± 160	68 ± 12	2110 ± 70	105 ± 11
Single top quark	2440 ± 330	552 ± 76	25.8 ± 5.6	217 ± 52	15.4 ± 4.1	136 ± 50	5.6 ± 2.4
Diboson	317 ± 41	41.2 ± 5.8	4.5 ± 1.1	188 ± 30	34.8 ± 4.8	12.9 ± 2.3	1.6 ± 0.4
Z+l	580 ± 210	1.3 ± 1.3	_	310 ± 130	0.38 ± 0.29	11.8 ± 8.2	0.1 ± 0.1
Z+(bl,cl)	8240 ± 840	50 ± 17	5.4 ± 1.8	910 ± 160	10.1 ± 3.7	118 ± 27	0.6 ± 0.4
Z+(bb,bc,cc)	1280 ± 170	1270 ± 150	41 ± 8	238 ± 45	101 ± 16	16.8 ± 4.2	8.6 ± 2.3
W+l	960 ± 300	3 ± 2	_	227 ± 95	1.0 ± 0.6	5.4 ± 3.9	0.02 ± 0.02
W+(bl,cl)	5960 ± 1100	56 ± 17	3.7 ± 2.3	770 ± 230	6.6 ± 3.2	65 ± 21	0.1 ± 0.1
W+(bb,bc,cc)	530 ± 150	470 ± 130	16.5 ± 4.7	112 ± 44	40 ± 16	10.2 ± 5.1	3 ± 2
SM Vh	55 ± 21	102 ± 39	1.04 ± 0.57	7.4 ± 2.9	4.7 ± 1.8	0.4 ± 0.2	0.06 ± 0.04
$t ar{t} h$	10.4 ± 5.3	7.8 ± 3.9	6 ± 3	1.4 ± 0.7	0.2 ± 0.1	4 ± 2	0.6 ± 0.3
$t ar t \ V$	102 ± 54	41 ± 22	8.7 ± 4.5	17.7 ± 9.5	1.4 ± 0.8	24 ± 12	1.8 ± 1.0
Total	43400 ± 200	9240 ± 95	1110 ± 30	4650 ± 79	282 ± 14	2510 ± 50	127 ± 11
Data	43387	9236	1125	4657	283	2516	127
1-lepton	1 b-tag	2 b-tag		1 b-tag	2 b-tag		
$tar{t}$	16300 ± 600	3900 ± 120		8100 ± 300	400 ± 50		
Single top quark	4100 ± 600	860 ± 130		1100 ± 300	120 ± 30		
Diboson	110 ± 20	12 ± 2		220 ± 30	34 ± 5		
Z+l	40 ± 10	0.09 ± 0.05		14 ± 6	0.2 ± 0.1		
Z+(bl,cl)	170 ± 10	0.7 ± 0.5		38 ± 6	0.4 ± 0.2		
Z+(bb,bc,cc)	27 ± 4	17 ± 2		11 ± 2	4.5 ± 0.6		
W+l	550 ± 180	3 ± 3		590 ± 230	0.2 ± 0.2		
W+(bl,cl)	5700 ± 440	24 ± 8		1800 ± 300	30 ± 10		
W+(bb,bc,cc)	820 ± 140	420 ± 70		350 ± 80	180 ± 40		
SM Vh	60 ± 20	90 ± 30		14 ± 6	11 ± 4		
Multijet	200 ± 100	1.7 ± 0.9		_	_		
Total	28100 ± 170	5320 ± 70		12200 ± 120	780 ± 30		
Data	28073	5348		12224	775		
2-lepton	1 <i>b</i> -tag	2 b-tag	3+ b-tag	1 b-tag	2~b-tag		add. b -tag
$tar{t}$	2570 ± 80	1940 ± 110	58 ± 9	5.3 ± 2.6	0.4 ± 0.2		± 5
Single top quark	185 ± 25	58 ± 9	1.5 ± 0.4	0.7 ± 0.1	0.2 ± 0.2		± 0.3
Diboson	570 ± 80	159 ± 24	5.2 ± 1.3	35 ± 5	8.5 ± 1.3		± 0.8
Z+l	2210 ± 950	2 ± 3	_	85 ± 34	1.0 ± 0.5		\pm 4
Z+(bl,cl)	37200 ± 1100	130 ± 50	12 ± 5	240 ± 40	2.3 ± 0.8		± 11
Z+(bb,bc,cc)	7840 ± 690	6320 ± 170	150 ± 20	74 ± 12	34 ± 5		± 3
W+l	1.9 ± 0.7	_	_	0.03 ± 0.01	_		$\pm \ 0.01$
W+(bl,cl)	37 ± 9	0.9 ± 0.7	_	0.4 ± 0.1	_		$\pm \ 0.01$
W+(bb,bc,cc)	5.4 ± 1.4	1.9 ± 0.3	0.03 ± 0.01	0.17 ± 0.06	0.02 ± 0.01		$\pm \ 0.05$
SM Vh	105 ± 40	140 ± 60	1.3 ± 0.7	1.6 ± 0.6	0.8 ± 0.3	0.2	± 0.1
$tar{t}$ h	0.9 ± 0.5	1.6 ± 0.8	1.1 ± 0.5	0.05 ± 0.02	0.01 ± 0.01	0.15	$\pm \ 0.07$
$tar{t}\ V$	140 ± 80	60 ± 30	6 ± 3	10 ± 5	0.6 ± 0.3	12 :	± 6
Total	50900 ± 230	8810 ± 90	240 ± 20	450 ± 20	47 ± 5		± 9
Data	50876	8798	235	439	50	1	01

Upper limits on pseudo-scalar production

There's lots more!

Far too much for today, but...

AROadman

Guide to enhancing discovery potential

What would new physics look like?

Finding new physics in increasingly-rare places

Facts: 1) We've Looked in a lot of places, but not everywhere. 2) We haven't observed anything "obvious" just yet. Inferences: 1) New physics couplings may be "too weak" to see yet. our data. corners.

What would new physics look like?

Model-driven probe for new physics

Facts:

- 1) We've Looked in a lot of places, but not everywhere.
- 2) We haven't observed anything "obvious" just yet.

Inferences:

- 1) New physics couplings may be "too weak" to see yet.
- 2) Smaller excesses may already be hiding in our data.
- 3) We have to be willing to look in very rare corners.

$$\mathcal{L}_{V} = -\frac{1}{4}D_{[\mu}V_{\nu]}^{a}D^{[\mu}V^{\nu]\,a} + \frac{m_{V}^{2}}{2}V_{\mu}^{a}V^{\mu\,a} \qquad \text{``Heavy Vector Triplet'' Model}$$

$$+ i\,g_{V}c_{H}V_{\mu}^{a}H^{\dagger}\tau^{a}\overset{\leftrightarrow}{D}^{\mu}H + \frac{g^{2}}{g_{V}}c_{F}V_{\mu}^{a}J_{F}^{\mu\,a}$$

$$+ \frac{g_{V}}{2}c_{VVV}\,\epsilon_{abc}V_{\mu}^{a}V_{\nu}^{b}D^{[\mu}V^{\nu]\,c} + g_{V}^{2}c_{VVHH}V_{\mu}^{a}V^{\mu\,a}H^{\dagger}H - \frac{g}{2}c_{VVW}\epsilon_{abc}W^{\mu\,\nu\,a}V_{\mu}^{b}V_{\nu}^{c}.$$

There's lots more!

Far too much for today, but...

A reminder...

Build & Test a Model

Model-driven probe for new physics

Heavy Vector Triplet Example

A model with W' and Z' bosons

A Road map

Enhancements to search potential via targeted model tests

- Models with Heavy Resonances
- Combined searches

LHC Upgrade Program

Staged upgrades during operations pauses

Triggering in a Nutshell

Filtering down to the data we want to keep

Detector	Channels	Fragment size [KB]		
Pixels	1.4*10 ⁸	60		
SCT	6.2*10 ⁶	110		
TRT	3.7*10 ⁵	307		
LAr	1.8*10 ⁵	576		
Tile	104	48		
MDT	3.7*10 ⁵	154		
CSC	6.7*10 ⁴	256		
RPC	3.5*10 ⁵	12		
TGC	4.4*10 ⁵	6		
LVL1		28		

Triggering 101

40 MHz proton collision rate

X encoded in 1.5 MB per event

= 55 TB/sec

1500 MB/sec mass storage rate

1000 Hz event rate storage

Reject 99.9975% of collisions in custom hardware

gets dropped?

Ideally not top quarks

$$V(\phi) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$$

$$M_H^2 = M_{\mathrm{tree}}^2 + (M_H^2) +$$

$$\delta M^2 \propto rac{a}{16\pi^2} g^2 \Lambda^2$$

Purifying our top samples

Lemonade from lemons

Purifying our top samples

Lemonade from lemons

Increased Luminosity = Messier Events

ATLAS Phase-1 Upgrade

Focusing on the calorimeter for now

Super

HIGH RES IMAGE 300dpi

LOW RES IMAGE 72dpi

10x increase in image resolution 1,700 Towers → 17,000 Super-Cells

Level-1 Calorimeter Trigger

Super-cells!

Level-1 Calorimeter Trigger electronics.

Being installed & commissioned NOW.

LHC Upgrade Program

Staged upgrades during operations pauses

CONSTRUCTION

INSTALLATION & COMM

PHYSICS

HL-LHC CIVIL ENGINEERING:

HL-LHC TECHNICAL EQUIPMENT:

DESIGN STUDY

DEFINITION EXCAVATION BUILDINGS

PROTOTYPES

LHC Upgrade Program

Staged upgrades during operations pauses

= 220

One more degree of complexity

process ALL the data!

Process the entire calorimeter every 25 ns!

5G to the rescue! Bootstrapping modern telecom

ATLAS Global Trigger

Bootstrapping modern telecom

HL-LHC Global Trigger hardware prototypes

Ongoing area of R&D

LHC Upgrade Program

Staged upgrades during operations pauses

The unfinisThermalitediscoveryal discovery.

(MOSt Of) The MSU Team The ones that get the work done.

