DAILY NEWS

World - Business - Finance - Lifestyle - Travel - Sport - Weather Issue: 240104 THE WORLDS BEST SELLING NATIONAL NEWSPAPER Est - 1965

Standard Model Scandal:

The Higgs boson is boring?

Miracle cure leaves researchers wanting more. CERN researchers continue their search for new physics while prominent theorists cite need for beyond Standard Model phenomenology. "Where's the beef?," asks John Ellis, "There has got to be more to this puzzle."

JKmit Mint 1834		
orig,	Desperately Seeking Symmetry:	Roadst
Iter. ated s it.	Young researchers desire partner for lonely	PDL 16.9 888.80
$\begin{array}{r} \text { Ithr, } \\ \text { mi. } \\ \text { 4697, } \\ \text { All } \\ \text { eng } \end{array}$	top quark. Large masses preferred, strong attraction to Higgs boson is ideal. Must be willing to interact	Autor Full pi \#3TD. 1-877.
$\begin{array}{r} 56 \mathrm{k}, \\ 995 \\ 88 \end{array}$	with SM particles. Email: bsm_love@cern.ch	MOTC Silve bik

In the IHC News:

New paths to new physics \& WAY more data ahead

Octoher, 2013

But is it a Higgs boson??

Higgs Goundings: 2013 vs 2022

Fast forward to today

The Standard Moule Sueceets Survives

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{2} \operatorname{Tr} G_{\mu \nu} G^{\mu \nu}-\frac{1}{2} \operatorname{Tr} W_{\mu \nu} W^{\mu \nu}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \\
& +\left(D_{\mu} \phi\right)^{\dagger} D^{\mu} \phi+\mu^{2} \phi^{\dagger} \phi-\frac{1}{2} \lambda\left(\phi^{\dagger} \phi\right)^{2} \\
& +\sum_{f=1}^{3}\left(\bar{\ell}_{L}^{f} i \not D \ell_{L}^{f}+\bar{\ell}_{R}^{f} i \not D \ell_{R}^{f}+\bar{q}_{L}^{f} i \not D q_{L}^{f}+\bar{d}_{R}^{f} i \not D d_{R}^{f}+\bar{u}_{R}^{f} i \Delta D u_{R}^{f}\right) \\
& -\sum_{f=1}^{3} y_{\ell}^{f}\left(\bar{\ell}_{L}^{f} \phi \ell_{R}^{f}+\bar{\ell}_{R}^{f} \phi^{\dagger} \ell_{L}^{f}\right) \\
& -\sum_{f, g=1}^{3}\left(y_{d}^{f g} \bar{q}_{L}^{f} \phi d_{R}^{g}+\left(y_{d}^{f g}\right)^{*} \bar{d}_{R}^{g} \phi^{\dagger} q_{L}^{f}+y_{u}^{f g} \bar{q}_{L}^{f} \tilde{\phi} u_{R}^{g}+\left(y_{u}^{f g}\right)^{*} \bar{u}_{R}^{g} \tilde{\phi}^{\dagger} q_{L}^{f}\right),
\end{aligned}
$$

Muon Anomalous Magnetic Moment

Puzules in the Standarid Moded

Higgs Mass Radiative Gorrections

Getting loopy?

The Higgs Vacuum
 Getting loopy?

$$
V(\phi)=\mu^{2} \phi^{\dagger} \phi+\lambda\left(\phi^{\dagger} \phi\right)^{2}
$$

Higgs boson mass

Vacuum stability

The Higgs Vacuum
 Getting loopy?

The Higgs Vacuum

The Higgs Vacuum
 Getting loopy?

$$
V(\phi)=\mu^{2} \phi^{\dagger} \phi+\lambda\left(\phi^{\dagger} \phi\right)^{2}
$$

The Higgs Vacuum
 Getting loopy?

$$
V(\phi)=\mu^{2} \phi^{\dagger} \phi+\lambda\left(\phi^{\dagger} \phi\right)^{2}
$$

$$
M_{H}^{2}=M_{\text {tree }}^{2}+\left(\stackrel{H}{H}_{H}^{H}\right)+\left({\underset{H}{H}}_{\bar{E}}^{H}\right)+\left(\bigodot_{H}^{\omega_{H} z}\right)+(\overbrace{H}^{* s M})
$$

The Language of the Standard Model

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{2} \operatorname{Tr} G_{\mu \nu} G^{\mu \nu}-\frac{1}{2} \operatorname{Tr} W_{\mu \nu} W^{\mu \nu}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \\
& +\left(D_{\mu} \phi\right)^{\dagger} D^{\mu} \phi+\mu^{2} \phi^{\dagger} \phi-\frac{1}{2} \lambda\left(\phi^{\dagger} \phi\right)^{2} \\
& +\sum_{f=1}^{3}\left(\bar{\ell}_{L}^{f} i \not D \ell_{L}^{f}+\bar{\ell}_{R}^{f} i \not D \ell_{R}^{f}+\bar{q}_{L}^{f} i \not D q_{L}^{f}+\bar{d}_{R}^{f} i \not D d_{R}^{f}+\bar{u}_{R}^{f} i \not D u_{R}^{f}\right) \\
& -\sum_{f=1}^{3} y_{\ell}^{f}\left(\bar{\ell}_{L}^{f} \phi \ell_{R}^{f}+\bar{\ell}_{R}^{f} \phi^{\dagger} \ell_{L}^{f}\right) \\
& -\sum_{f, g=1}^{3}\left(y_{d}^{f g} \bar{q}_{L}^{f} \phi d_{R}^{g}+\left(y_{d}^{f g}\right)^{*} \bar{d}_{R}^{g} \phi^{\dagger} q_{L}^{f}+y_{u}^{f g} \bar{q}_{L}^{f} \tilde{\phi} u_{R}^{g}+\left(y_{u}^{f g}\right)^{*} \bar{u}_{R}^{g} \tilde{\phi}^{\dagger} q_{L}^{f}\right)
\end{aligned}
$$

JUST SO STORIES

A historical perspective

Was it a right or a left turn at Lambda QCD??

Atom Land:

 A Guided Tour Through the Strange (and Impossibly Small) World of Particle PhysicsBy Jon Butterworth UC London

ISBN: 978-1615193ヶ38

Mass Resonances

$$
R=\frac{\sigma\left(e^{+} e^{-} \rightarrow q \bar{q}\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}
$$

The Novemher Revolution

November 1974: Discovery of the Charmed Quark

Volume 33, Number 23
PHYSICAL REVIEW LETTERS
2 December 1974
Experimental Observation of a Heavy Particle $J \dagger$
J. J. Aubert, U. Becker, P. J. Biggs, J. Burger, M. Chen, G. Everhart, P. Goldhagen, J. Leong, T. McCorriston, T. G. Rhoades, M. Rohde, Samuel C. C. Ting, and Sau Lan Wu Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

and

Y. Y. Lee

Brookhaven National Laboratory, Upton, New York 11973 (Received 12 November 1974)

We report the observation of a heavy particle J, with mass $m=3.1 \mathrm{GeV}$ and width approximately zero. The observation was made from the reaction $p+\mathrm{Be} \rightarrow e^{+}+e^{-}+x$ by measuring the $e^{+} e^{-}-$mass spectrum with a precise pair spectrometer at the Brookhaven National Laboratory's $30-\mathrm{GeV}$ alternating-gradient synchrotron.

Discovery of a Narrow Resonance in $e^{+} e^{-}$Annihilation*
J.-E. Augustin, † A. M. Boyarski, M. Breidenbach, F. Bulos, J. T. Dakin, G. J. Feldman, G. E. Fischer, D. Fryberger, G. Hanson, B. Jean-Marie, \dagger R. R. Larsen, V. Lüth,
H. L. Lynch, D. Lyon, C. C. Morehouse, J. M. Paterson, M. L. Perl,
B. Richter, P. Rapidis, R. F. Schwitters, W. M. Tanenbaum,
and F. Vannucci \ddagger
Stanford Linear Accelerator Center, Stanford University, Stanford, Califomia 94305

and

G. S. Abrams, D. Briggs, W. Chinowsky, C. E. Friedberg, G. Goldhaber, R. J. Hollebeek,
J. A. Kadyk, B. Lulu, F. Pierre, \& G. H. Trilling, J. S. Whitaker,
J. Wiss, and J. E. Zipse

Lawrence Berkeley Laboratory and Department of Physics, University of California, Berkeley, California 94720 Received 13 November 1974)

We have observed a very sharp peak in the cross section for $e^{+} e^{-} \rightarrow$ hadrons, $e^{+} e^{-}$, and possibly $\mu^{+} \mu^{-}$at a center-of-mass energy of $3.105 \pm 0.003 \mathrm{GeV}$. The upper limit to the full width at half-maximum is 1.3 MeV .

Emerying Landscape

"Kew" phenomena?

Hydrogen $\left(\mathrm{H}_{2}\right)$	Nitrogen $\left(\mathrm{N}_{2}\right)$	Oxygen $\left(\mathrm{O}_{2}\right)$	Fluorine
$\left(\mathrm{F}_{2}\right)$			

Particle colliders as engines of discovery

Large Hadron Collider (2009 - Present)

proton - proton \&e heavy-ion collisions
collision energy: r-14 TeV

LHC - B Point 8

CERN

ATLAS

$$
2
$$

Alice

 Point 2CMS
Point $5 \stackrel{a \pi}{9 x}$

$$
1.8
$$

Guide to enhancing discovery potential

Bnhancements to search potential via targeted model tests

- Models with Heavy Resonances
- Combined searches

Upgrades to the ATLAS triggering capabilities \& Jet Identification

- Phase-1: 2019-2022
-HL-LHC: 2026-2028

Programmatic foundation of searches
for new physics at ATLAS

- Searches for heavy resonances

So where's the new physies hiding?

A window to new physics

Example:Two-Higgs DoubletMoidels

D-Foson Resonances

D-Foson Resonances

Upper Imimis on nseudo-sealar nroduction

There's Iots more]

Far too much for today, but..

JHFPP 03 (2080) 034

JHIFP 04 (20\&0) 171

PRL 125 (2020) 051801

PLB 787 (2018) 68

ARoadmap

What would new mhysics look ilie?

Finding new physics in increasingly-rare places

Facts:

1) We've looked in a lot of places, but not everywhere.
2) We havent observed anything "obvious" just yet.

Inferences:

1) New physics couplings may be "too weak" to see yet.
2) Sm (1 our data.
3) We

What would new mhysics look ilie?

Fack:

1) We've looked in a lot of places, bul not everywhere.
2) We havent observed anyching "obvious" just yet.

Inferences:

1) New physics couplings may be "too weak" bo see yel.
2) Smaller excesses may already be hiding in our data.
3) We have to be willing to look in very rare corners.

$$
\begin{aligned}
\mathcal{L}_{V}= & -\frac{1}{4} D_{[\mu} V_{\nu]}^{a} D^{[\mu} V^{\nu] a}+\frac{m_{V}^{2}}{2} V_{\mu}^{a} V^{\mu a} \quad \text { "Heavy Vector Triplet" Model } \\
& +i g_{V} c_{H} V_{\mu}^{a} H^{\dagger} \tau^{a} \stackrel{\leftrightarrow}{D}{ }^{\mu} H+\frac{g^{2}}{g_{V}} c_{F} V_{\mu}^{a} J_{F}^{\mu a} \\
& +\frac{g_{V}}{2} c_{V V V} \epsilon_{a b c} V_{\mu}^{a} V_{\nu}^{b} D^{[\mu} V^{\nu] c}+g_{V}^{2} c_{V V H H} V_{\mu}^{a} V^{\mu a} H^{\dagger} H-\frac{g}{2} c_{V V W} \epsilon_{a b c} W^{\mu \nu a} V_{\mu}^{b} V_{\nu}^{c}
\end{aligned}
$$

JHIP 05 (2020) 054

PIB 787 (2018) 68

Builid \& Testa Model

Heavy Vector Trimlet Examole

JHITP Or (2018) 089

ARoadmap

Enhancements to search potential via targeted model tests

- Models with Heavy Resonances
- Combined searches

Upgrades to the ATLAS triggering capabilities \& Jet Identification

- Phase-1: 2019-202ぇ
-HL-LHC: 2026-2028

Programmatic foundation of searches for new physics at ATLAS

- Searches for heavy vector resonances

LiCUngrade Program

LHC / HL-LHC Plan

Triggering in a Nutshell
 Filtering down to the data we want to keep

What gets dropped?

$$
V(\phi)=\mu^{2} \phi^{\dagger} \phi+\lambda\left(\phi^{\dagger} \phi\right)^{2}
$$

Purifying our top samples

Purifying our top samples

Increased Luminosity = Messier Events

ATLIS Phase-1 Upgrate

10x increase in image resolution
1,700 Towers \rightarrow 17,000 Super-Cells

Level-1Calorimeter Trigger

Level-1 Calorimeter Trigger electronics.
Being installed \& commissioned NOW.

LiCUngrade Program

LHC / HL-LHC Plan

HL-LHC CIVIL ENGINEERING:

Staged upgrades during operations pauses

Mean

One more degree of complexity

Process the entire calorimeter every 25 ns !

FG to the rescue!

Bootstrapping modern telecom

AILAS Hlohal Trigger

HL-LHC Global Trigger hardware prototypes
Ongoing area of $R \& D$

LiCUngrade Program

LHC / HL-LHC Plan

HL-LHC CIVIL ENGINEERING:

The unfinis hatimethil seovental diseorery.

[Most of The MSU Team

The ones that get the work done.

