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Abstract

In this paper we describe continuing simulations of a proposed picosecond time-
of-flight (TOF) detector based on a microchannel-plate photomultiplier tube (MCP
PMT).! The system under consideration consists of a large area (5cm x 5cm) MCP
PMT. Incident high energy particles produce Cherenkov light as they travel through
the PMT window, which is amplified by a microchannel plate and detected on a multi-
anode consisting of equal-time impedance-matched transmission lines. Comprehensive
simulations of Cherenkov emission, photoelectron production, and signal collection in-
dicate that with the Burle Planacon MCP a 6 picosecond resolution could be achieved.
A large area MCP with faster timing characteristics could improve the resolution to 1
picosecond.

1 Introduction

The experimental probing of most of the fundamental problems in particle physics relies on
the identification of ‘flavor’, the quantum numbers that differentiate the 6 kinds of quarks
and the three generations of leptons. Investigations of these problems rely on the kinematic
reconstruction of events based on the secondary particles observed by a detector; identi-
fying the pions, kaons, and baryons produced in the decay of heavier flavors contributes
substantially to our understanding of fundamental physical processes.

The charged hadrons 7, K, and p, the predominant types produced in collisions, have very
similar interaction characteristics. For momenta above a few GeV most particle detectors can
only measure the 3-momentum, and cannot distinguish one hadron from another. The mass
can be measured by combining a velocity measurement with the momentum measurement
provided by the tracking system. This velocity measurement is the goal of time-of-flight
(TOF) systems. Since the secondary particles are typically moving at nearly the speed
of light, the time differences between different particles with the same momentum are very
small. Figure 1 shows the 1o separation in flight time for pions, kaons, and protons travelling
a 1.5 meter path as a function of momentum. In existing time-of-flight systems, bars of
scintillator produce light which bounces over several meters to phototubes at either end.
The scintillation process, the long light paths with their consequent variation, and the jitter
of conventional photomultipliers all limit the time resolution of these systems.

We aim to extend the identification of particles to higher momenta by designing a time-
of-flight system with much better time resolution. We are simulating a TOF detector where
particles travel directly through the photodetector itself, generating Cherenkov light which

! This paper extends previous work by T. Credo, H. Frisch, H. Sanders, R. Schroll, and F. Tang [1]. New
in this paper are models of window transmission in the Monte Carlo, simulations using the Burle Planacon
anode, a consideration of window thickness and material, simulations of a new summing multianode in
HSPICE, and simulations of showering in the magnetic coil.
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Figure 1: The 1o separation in time-of-flight over 1.5 meters for pions, kaons, and protons as a function of

momentum.

is detected after traversing only a short path length (no bounces). In a detector like CDF
or ATLAS, this requires that the collision vertex be surrounded by TOF detectors in a
cylindrical array. Particles would be tracked by the tracking system inside the solenoid, and
extrapolated to the TOF array to give a precise location of where the particle struck. The
particle traversing the window of the photomultiplier tube produces Cherenkov light, which
is then converted and amplified by an MCP. This setup eliminates the sources of timing
uncertainty associated with a traditional scintillator TOF system.

2 A Picosecond TOF Detector

We intend to show through simulations that a TOF detector in this geometry could achieve
timing resolution on the order of one picosecond. In the design under consideration, a particle
incident on the front face of a photodetector produces Cherenkov radiation at a characteristic
angle as it passes through the window. These photons strike a photocathode, producing
photoelectrons with a quantum efficiency depending on wavelength (at most ~25%). As
these electrons travel through the pores of the MCP, they produce showers of electrons
which land on a multianode that sums these signals at four central collectors. This process
is depicted in Figure 2.

To fully understand the characteristics of this kind of device, we developed comprehen-
sive simulations of the timing characteristics of the phototube and anode. Simulations of
Cherenkov emission in the window and the properties of the window, photocathode, and
microchannel plate were handled using a ROOT program based on existing phototubes.
The locations and times of electron showers arriving at the anode were fed into an HSPICE
simulation of a summing multianode to produce pulses characteristic of signals delivered to
the electronics. In addition, we examined the effects of window thickness and material on
the timing performance of the system, as well as the effect on the system of showering in the
magnetic coil.



Figure 2: As a particle traverses the window of the phototube, it produces Cherenkov photons which strike
a photocathode. These signals are amplified by the microchannel-plate and collected on a summing anode.

3 Cherenkov Emission in the Window

In simulation of the window, we examined the effects relevant to the timing performance of
the detector. These are:

1. the production of Cherenkov radiation,
2. the probability of absorption in the window,
3. the spread in travel time required for Cherenkov photons to reach the photocathode,

4. and the position of photons striking the photocathode.

In addition we want to examine how the performance of the device is affected by the
dimensions and material of the window. We looked at two window materials, fused silica
and MgFs, and a range of window thickness between 1 and 8 millimeters. In general MgF,
is preferable because it is transparent further into the ultraviolet (where more photons are
produced).



Cherenkov radiation is produced by a charged particle in a medium when the velocity of
the particle exceeds the velocity of light in that medium [2],[3]. Since the velocity of light in a
medium is ¢/n, where n is the index of refraction, Cherenkov light will be produced whenever
v > ¢/n, or using B = v/c, fn > 1. This radiation is produced essentially instantaneously.
In the limit of an infinite radiating medium, it forms a coherent wavefront in the shape of a
cone. The Cherenkov cone has an opening half angle of 7/2 — §c where

1
cosbc = B’
Since in this simulation the thickness of the radiator is on the order of 1000 times the relevant
wavelengths, the infinite radiator approximation is valid.

Cherenkov radiation is ‘blue’; that is, there is more energy in the shorter wavelengths.

The number of photons radiated per wavelength per distance is
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where Z is the charge of the particle (in multiples of €) and « is the fine structure constant
[4],[5]. Since the index of refraction n is a function of wavelength, we approximate n(\) using
the Sellmeier equation
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where By, By, By, C1, Cy, and Cj are the Sellmeier coefficients for fused silica or MgF, [6],[7].

The Monte Carlo algorithm for Cherenkov production in the window works by splitting
the radiator into a grid in z, the distance into the radiator, and ), the wavelength. At each
point in the grid 8°N/0z0\ is calculated. After multiplying by dzd\, this is taken to be
the probability of photon emission from that location. After randomly deciding whether a
photon is produced, the algorithm calculates the position and time that the photon reaches
the photocathode and randomly determines, according to the transmission properties of the
material [8],[9] (which depend on wavelength), whether the photon is transmitted to the
photocathode.

4 The Photocathode and Microchannel Plate

As Cherenkov photons arrive on the photocathode, they produce photoelectrons with a char-
acteristic probability (quantum efficiency) that depends on wavelength. In our simulations,
we use a multialkali photocathode, which offers a relatively high quantum efficiency over a
wide spectral range. Although the quantum efficiency curve was obtained for a Hamamatsu
multialkali photocathode [10], this data is comparable to similar photocathodes produced by
other vendors. In the Monte Carlo simulation, the photocathode is modeled by randomly
deciding whether each incident photon produced a photoelectron according to the quantum
efficiency.

Another factor in the time resolution of the detector is the transit time spread (TTS), or
jitter, associated with the MCP itself. The time it takes from the creation of a photoelectron
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to the production of a signal will vary slightly from trial to trial. Some of this variation
comes from the differences in path length of the first photoelectron, but most arises from
uncertainties inherent in the MCP itself. In our simulations, we primarily used the Burle
Planacon, with orrs = 60 ps [11], but microchannel plates with smaller pores, lower time
spreads, and smaller active areas are available. The TTS is one of the main factors limiting
the time resolution of the detector. In our simulation, we approximate the TTS by blurring
the times of signals arriving at the anode using a Gaussian with o = oprg.

5 Window Thickness and Material

To understand how the performance of the TOF system depends on the window dimensions
and materials, we consider simulations for a range of window thicknesses and for both fused
silica and MgF,. The size of window is limited by the requirement that a particle produce an
easily detectable signal and the absorption which begins to dominate around 8 mm. Figure
3 summarizes the timing resolution and signal size for a range of window sizes from 1 mm
to 8 mm, calculated from 1000 simulated pulses using the Burle Planacon (with oprs = 60
picoseconds).

Window RMS lJitter (ps) | Number of Photoelectrons
Width (mm) | Silica | MgF, Silica MgF,

1.0 15.31 12.88 16.3 = 4.0 21.6 £ 4.5
1.5 12.18 10.19 242 +£ 4.7 322 £ 54
2.0 10.21 8.74 324+ 55 42.6 £ 6.2
2.5 9.27 8.00 40.2 £ 6.2 527+ 7.0
3.0 8.39 7.22 48.2 + 6.9 63.0 &£ 7.5
3.5 7.66 6.84 55.6 £ 7.2 73.4 £ 8.4
4.0 7.12 6.06 63.6 + 8.0 83.2 £ 8.7
4.5 6.80 5.90 71.1 + 8.5 93.1 +£ 9.5
5.0 6.80 5.71 78.2 £ 8.5 102.6 £ 9.8
5.5 6.38 5.41 8.8+ 9.2 | 1122 £ 104
6.0 6.34 5.18 93.0 £9.2 | 122.0 £ 10.5
6.5 5.82 5.04 100.5 £ 9.6 | 130.9 = 11.4
7.0 5.71 4.85 109.0 + 104 | 141.0 £ 114
7.5 5.30 4.75 114.8 + 10.3 | 1488 £ 114
8.0 5.29 4.59 121.9 + 10.6 | 159.4 £ 11.9

Figure 3: A table showing the dependence of the timing accuracy and the signal size on the window
thickness, for fused silica and MgFs. The RMS jitter in picoseconds was measured from the distribution
of average signal times (arriving at the anode) for 1000 simulated pulses generated by normally incident
particles. The average number of photoelectrons, along with the standard deviation of the distribution, was
calculated for the same 1000 pulses.

While it is clear that increasing the window size as much as possible will minimize timing
uncertainty, larger window thicknesses translate into a large area of photoelectron showers to
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be detected on the anode. As the thickness goes beyond 8 mm, some of nearly every signal
will be lost because of the finite size of the anode, which will make the pulse shape vary
dramatically from trial to trial. For non-normally incident particles this problem is more
severe. A 5 mm window is a good compromise between timing accuracy on the anode and a
consistent pulse shape which translates into timing accuracy in the readout electronics.

From this table we can also see that orrs/ VN , where N is the number of detected
signals, is a good estimate of the timing resolution (to within 10%). Since we expect the
timing accuracy to depend primarily on the transit time spread of the microchannel-plate,
we compare the results of Table 3 to simulations using an MCP with o7 = 10 ps, consistent,
with more accurate MCPs with much smaller active areas [12]. For an MgFy window 5 mm
thick, this smaller MCP obtains a timing resolution of 1.0 ps. The distribution of average
detection times for the Burle Planacon and for a smaller MCP-PMT are shown in Figure 4
for 5 mm MgFy windows
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Figure 4: The distribution of detection times for a detector using the Burle Planacon’s orrs = 60 ps (left)
and a orrs = 10 ps consistent with small area MCPs (right), with a 5§ mm MgF,; window. The average
times for photoelectron signals arriving on the anode were binned for 1000 simulated pulses.

While these simulations indicate that a timing resolution of ~ 5 ps can be achieved with
existing technology, a resolution of ~ 1 ps would require the development of a large area
MCP with a transit time spread on the order of 10 picoseconds.

6 Non-normal Incidence

In the previous simulations we have always used particles travelling directly through the
device (normally incident). We now consider the effect of non-normal incidence on timing
resolution and signal size. Since an incident particle with an angle to the normal, ¢, greater
than about 7/4 will a produce a Cherenkov cone which intersects the photocathode in only
a small area, we only consider angles less than 7/4. Figure 5 summarizes the effect of non-
normal incidence on timing as a function of the angle ¢ of the incident particle (Appendix
A shows the geometry used in calculation of Cherenkov photon position and time for both
normal and non-normal incidence).



¢ (degrees) | o (ps) | Number of Photoelectrons
0 5.67 102.2 £+ 9.6
5 5.68 102.0 £ 10.0
10 5.44 104.3 £ 9.9
15 5.54 105.5 + 10.2
20 5.46 106.5 £ 9.9
25 5.62 109.1 + 10.3
30 5.69 109.8 £ 104
35 5.53 109.2 + 10.3
40 5.58 108.8 = 9.9
45 5.62 1079 £ 10.1

Figure 5: The effect of non-normal incidence on the timing resolution and signal size is shown as a function
of the angle ¢, for the Burle Planacon with a 5 mm MgF, window. The RMS jitter (o) and average number
of photoelectrons were calculated from 1000 simulated pulses for each ¢.

7 Summing Circuit

Since the speed of light is 300 um/ps, the resolution of the detector is very sensitive to path
length differences as signals travel across the anode to electronics. To avoid the large path
length uncertainties inherent in a large area (5 cm x 5 cm) anode, our design uses a 16x16
multianode with each pad routed to a central collector by an equal length transmission line.
The four collectors on the back face of the tube deliver the summed signal to electrons. The
design for the summing anode board is shown in Figure 6.

Figure 6: A schematic drawing showing the proposed design for the summing multianode, which shows
anode pads and equal length routes.



The transmission lines in the design are all the same length, to within 10 ym, so that the
path length uncertainty inside the board is negligible. However, each pad on the surface of
the anode is 2700 pm on a side, which is a large enough area to contribute a small uncertainty
(0 =~ 1.3 ps). Since we are averaging this effect out over a large number of electrons in each
shower (~ 10°) and a large number of showers (~ 100), it can be reasonably assumed that it
has a very small effect on the time resolution. Since the summing board is a linear system,
the jitter in the signal arriving at the anode is (to a reasonable approximation) the time
jitter seen in the signal delivered to the electronics.

To understand the shape and the size of the pulse delivered to the electronics, we used
a Synopsis HSPICE simulation of the anode board using electrical properties calculated in
Mentor Graphics’ HyperLynx. A typical shower produced in a 5 mm MgF, window produces
a pulse of average height ~0.30 V and average rise time ~100 ps at the collector, when using
the Burle Planacon. These simulations used a termination of 50 €2 on each collector and a
gain in the MCP of 10°. Since each set of 64 summed lines did not terminate properly, the
pulse bounced through the board and decayed with a time constant 7 & 5.5 ns. Two images
of a sample pulse are shown in Figure 7.
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Figure 7: A representative event creates a pulse of -0.23 V with rise time of 80 ps at the collector (left).
This pulse bounces through the board for several nanoseconds, as shown by the voltage measured on the
collector (right).

The critical part of the pulse seen on the collector is the first rising edge, which will be
used to time the pulse by the electronics. Figure 8 shows the rising edge of ten typical pulses
seen in a tube using a 5 mm MgF,; window and the Burle Planacon; Figure 9 shows ten
similar simulated pulses for an MCP with oprg = 10 ps. These plots were obtained from
HSPICE simulations of the anode combined with ROOT data on the time and position of
electron showers. As expected, the timing resolution seen in these two pulses is approximately
what we calculated earlier. The pulses produced in a 10 picosecond TTS MCP also had a
much smaller pulse width and an average height around 1.3 V. The average rise time was
approximately 25 picoseconds.
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Figure 8: A plot of ten simulated pulses on the back of the anode. These voltages were generated using a 5
mm MgF» window with normally incident particles and the Burle Planacon MCP. In the HSPICE simulation,
the termination on the collector was 50 Q and the MCP gain was 10°.
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Figure 9: Ten pulses produced in a setup identical to the one in Figure 8 with the Burle Planacon replaced
with a micro-channel plate with 10 picosecond TTS.



8 Showering in the Coil

An additional minor effect that may impact the timing resolution of the system is showering
caused as the particle passes through the solenoid coil. This showering would not have been
observed in the tracking system, and thus if a particle produced in a shower reaches the
TOF system before the original particle, it may produce a false signal. However, since the
tracking system can extrapolate the path of the particle to a specific detector, the only
possible uncertainty arises when the original particle and the particles from the shower reach
the same detector within a short period of time. Figures 10 and 11 show this.
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Figure 10: False signals can be created when a pion enters the solenoid coil at normal incidence. The 7+
particle enters the coil from below, as indicated in blue. It creates an electron shower (red), most of which is
abosorbed or curls up inside the coil. A few electrons are high enough energy to traverse the coil, and travel
to the MCP-PMT array. The false signal occurs when these electrons reach the same detector, as denoted
by (1), and within a short period of time of the pion. The electrons that are labeled (2) will not affect the
timing because they do not reach the same detector as the pion.

The particles produced will primarily be electrons in the 0.1-100 MeV range, which in
the coil’s magnetic field have a cyclotron radius

P 3mm
r=—= .
gB pMeV/c

Thus, most of the electrons should curl up over several centimeters in the coil and do not
reach the TOF system. Furthermore, since many of the electrons are produced well inside
the magnet, most of them will be absorbed by the magnet.
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Figure 11: The other case where false signals can also be produced is when the pion is not normally
incident on the coil. The pion enters from the lower left, and electrons are showered in the coil as indicated.
Some electrons, indicated by (2), can shower so that their distance of travel, d., is less than that of the pion
(1), dpi. If the electrons are high-energy, this can cause the electron’s time of flight to be less than that of
the pion, thus causing false signals.

8.1 Geometry

To simulate the effect of showering in the coil on time resolution, we created a cross-sectional
model of the coil geometry in GEANTA4, released by the GEANTA4 collaboration at CERN [13]
and observed the showering for 10 GeV «+ particles. At the point where the pions strike
the coil, the coil can be locally modeled by a fixed target. For now, it is described simply
as a radiation-length-thick (8.9 cm [14]) slab of aluminum. To this we added a magnetic
field that linearly decreases from 12 kGauss at the inner edge to a small residual field (100
Gauss) at the outer edge. Figure 12 shows the geometry from different viewpoints as seen
in a ‘typical’ run, with about 10% of the particles shown here. Table 8.1 lists the geometry
of the various components in the simulation. A detailed accounting of the material is given
in Ref. [15]; at some point we will update the material to reflect the more detailed situation.

Description | Material | Thickness (¢cm) | At No (g/mol) | Density (g/cm?) | Z | X;qa (cm)
Coil Al 8.9 26.98 2.70 13 8.9
Drift Air 5.0 1.20 x1073 30391.82

70% N 14.01 1.17 x1073 7 | 32599.98
30% O 15.9994 1.33 x10-3 8 | 25713.98

Table 1: The components of the simulated CDF Coil and their relevant properties [14].
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Figure 12: The geometry of the simulation from two views, with a ‘“typical’ run superposed. In the side
view, 10-GeV 7T particles enter from the left, and in the rotated view, from the lower right. The magnet
coil has an internal magnetic field that falls linearly from 12 kG at the inner edge to 100 G at the outer edge
as indicated. The 7t particles are the blue tracks and the showered electrons are the red tracks.
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8.2 Technical Details of the Method

Using the example ExampleN02 [16]—a fixed target experiment simulation released by the
GEANT4 collaboration—as a basis, we modified the geometry of the target and tracker and
changed the magnetic field to accurately represent the magnet and space between it and the
TOF system. Information about the various environmental variables and setup conditions
used to run GEANT4 is given in Appendix B.

For each run, a 10-GeV charged pion was shot into the coil 1,000 times. At a distance
of 5 cm past the outer edge of the magnet, the pion’s x-y position and time since its initial
release were recorded. The position and time coordinates were also recorded for the showered
electrons, and from these, the difference in each coordinate calculated. This experiment was
repeated for different incident angles.

8.3 Results

8.3.1 Normal Incidence
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Figure 13: Histograms of initial and final showered energies of normally incident electrons for 1,000 7+
events. Both plots are on a double-log scale. The range of initial electron energies is from 4.7x10~7-549.0
MeV, and the range of final electron energies is from 0-304 MeV. In both plots, we can see that a significant
majority of electrons fall below 1 MeV.

Histograms of electron energies at production and final electron energies are shown in
Figure 13. As can be seen, most of the electrons produced have energies well below 1 MeV.
Of the original number, 87 electrons are energetic enough to travel 5 cm past the magnet.
Figure 14 shows the energy distribution at z = 5 cm past the outer edge of the coil. However,
most of this second bunch will either reach this point well after the pions that caused their
showering or will strike the PMT array far enough away from the pions. Figure 15 shows
the distribution of the spatial and time differences between the pions and their showered
electrons.

Since not all of these electrons will affect the timing resolution, we only included the
showered electrons that struck both within a 1 in x 1 in square centered at the pion’s
position and those that struck within 500 ps of the pion. With these cutoffs, the number of
electrons that impacted the timing was reduced to 24.

13



hist
Entries 1407
Mean x -0.000358
Meany  0.01026
RMS x 0.03377
RMSy 0.03061

Total Energy (MeV) Spread 5 cm after Solenoid for 1000 Events, Normal Incidence

Figure 14: The total energy distribution at 5 cm past the coil for 1,000 7+ events at normal incidence.
In this plot, (z,y) = (0,0) corresponds to the position where a normally incident pion would strike without
a magnetic field. As can be seen, the distribution is very concentrated (RMS x and RMS y < 0.034 , and
there is a slight bias towards the positive § direction. We expect this since the magnetic field in the coil is
in the % direction, and thus the pions travelling in the Z direction ought to bend in the Z x £ = ¢ direction,

resulting in slightly more observed energy in the positive y section of the surface.

Distance and Time Separation of Showered Electrons from Pions, Normal Incidence I hist
Entries 87
Meanx  3.027

Meany  41.71
RMSx  1.952
RMSy  54.87

Figure 15: The distribution of the spatial and time differences for pions and showered electrons at normal

incidence. The electrons that can produce fake rates can be seen at (z,y) < (1em, 500 ps).
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8.3.2 Non-normal Incidence
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Figure 16: Histograms of showered e~ energies for various incidences for 1,000 7+ events. The angles
used are shown in Table 8.3.2. The top-left histogram is for normal incidence, with angles increasing across
the top, and continuing across the bottom, from left to right. Again, it is noteworthy that most electrons’
energies fall under 1 MeV.

The simulation described above was also repeated for non-normal incidence. This case is
important to investigate because the path length for showered particles to the TOF system
could be shorter than that of the original pions, thus leading to shorter recorded times of
flight as indicated in Figure 11. We can see in Figure 16 the different distributions of electron
energies for different incident angles of the 7% beam. Figure 17 shows the energy distribution
around the incident 71 beam given different incident angles. Looking at Figure 18 and
Table 8.3.2, we can see that at first, as the incidence angle moves away from normal, the
pion fake rate initially begins to increase. However, from 18 to 27 degrees, and onwards, we
see a decrease in this fake rate. It should be noted that we did not include here results for
angles past 45 degrees, since the fake rate is nearly negligible. One possible explanataion
is as follows. For a false signal to be produced, the showered electron velocity must be
in approximately the same direction as the parent pion. As the incidence angle increases,
however, this means that there is more Aluminum in the coil to pass through, leading to a
higher probability for absorption. This explanation will be investigated in more depth in the
future.

However, given that the largest possible fake rate for pions incident at different angles on
the coil appears to be ~ 5%, we do not anticipate electromagnetic showering in the solenoid
coil to cause a problem in timing resolution.
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Figure 17: The energy distribution at 5 cm past the coil for 1,000 7% events for various incidences. Again,
the angles-histogram correspondence is as in Figure 16. Here, the RMS x and RMS y spreads don’t change
very much, since most electron energies are quite small (see Figure 16). The x-y position of the peaks is
arbitrary—only the peak width matters.

Angle of Showered Electrons that | Showered Electrons that
Incidence (°) Reach PMT array Produce False Signal
0 87 24
9 104 46
18 124 49
27 133 40
36 130 30
45 103 18

Table 2: The number of showered electrons that could produce false signals with 1,000 pions incident at

different angles.
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Figure 18: The distributions of the spatial and time differences for pions and showered electrons at various
incidences. As before, the electrons that can produce fake rates can be seen at (z,y) < (1em,500ps). The
angle-histogram layout is as indicated in the previous figures.
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9 Conclusions

Our simulations indicate that fast timing resolution is possible in an array of small (5cm x
5cm) custom MCP PMTs. Several features are worth noting:

1. With the existing Burle Planacon tube and a 5 cm MgF, window, we expect to be able
to achieve a 6 picosecond timing resolution in the signal delivered to electronics.

2. If a larger area MCP could be developed with the small pore size and fast timing
characteristics of existing small area MCPs, the time resolution of this detector could
be substantially improved.

3. It appears that the only fundamental limits to the time resolution of a detector in this
geometry are the transit time spread of the microchannel-plate and the uncertainty
inherent in measuring the electrical pulse produced.

However, there are still several significant issues that are not completely worked out:

1. A charged particle travelling through the detector may create a pulse as it passes
through the MCP and the anode which precedes the pulse generated by Cherenkov
emission. This phenomenon has been observed in a similar geometry [11].

2. We have assumed in our simulations that the response of an MCP to each photoelectron
in a Cherenkov shower is identical to the response to a single photon. This is probably
not the case. In general the performance of the MCP under various conditions is not
well understood.

3. A time-of-flight system with this resolution requires electronics capable of measuring
and digitizing the collected pulse.

4. Implementing a large array of these devices requires a very fast way to synchronize the
individual detectors in the system.

We are confident that if these obstacles can be overcome, a TOF system consisting of
custom MCP-PMTs could be developed with resolution on the order of one picosecond.

18



References

[1] H. Frisch, et al, IEEE NSS 2004 : Conference Record, N16-83 (2004).

[2] K. Kleinknecht, Detectors for Particle Radiation, 2nd Edition, University Press, Cam-
bridge (1998).

[3] W. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer-Verlag,
New York (1994).

[4] CDEF-II Collaboration, Nuclear Instruments and Methods 518, 605-608 (2004).
[5] S. Cabrera, J.P. Fernandez, et al, Nuclear Instruments and Methods 484 416-423 (2002).
[6] Union Optic, Optical Materials http://www.u-optic.com/material.htm

[7] Corning Incorporated, HPFS Fused Silica Standard Grade http://www.corning.com/
semiconductoroptics/products_services/pdf/h0607_hpfs_standard productsheet.pdf

[8] Red Optronics, Optical Materials: MgF, http://www.redoptronics.com/MgF2-optical-
material.html

[9] Edmund  Optics, Technical  Specifications: UV Fused Silica Windows
http://www.edmundoptics.com/onlinecatalog/displayproduct.cfm?productID=2076

[10] Hamamatsu Corporation, 2002 Catalog Ezxcerpts: MCP-PMTs,
http://usa.hamamatsu.com/assets/pdf/catsandguides/PMTCAT special mcp-pmt.pdf

[11] M. Akatsu, et al, Nuclear Instruments and Methods 528, 763-775 (2004).

[12] Hamamatsu Corporation, 2002 Catalog Excerpts: MCP-PMTs
http://usa.hamamatsu.com/assets/pdf/parts_R/R3809U-50.pdf

[13] GEANT4 Collaboration, CERN, GEANT/ Home Page, http://geantd.cern.ch/
[14] S. Eidelman et al., The Review of Particle Physics, 2004, Phys. Lett. B 592, 1 (2004)

[15] Minsuk Kim, Ray Culbertson, Robert Blair; CPR Material Counts of CDF Run II,
CDF Note CDF/PUB/CDF/PUBLIC/6101; 8/27/02

[16] GEANT4 Collaboration, CERN, Included in GEANT4 package download. See
http://geant4.cern.ch/

[(17] D. Elvira., P. Spentzouris, and J. Yarba, GEANT4 at Fermilab,
http://cepa.fnal.gov/psm/geant4/

19



A Geometry used in the Monte Carlo

A sketch of the geometry is shown below. Since the results of the any simulation can be
rotated and translated, it suffices to consider particles with velocities in the x and z directions,
and to make the origin the point on the photocathode which corresponds to where the particle
enters the window. In the diagram, 7 is the iteration number and nz is the total number of
iterations along the particles path (using intervals 0z).
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= : i« dx » [n:{—i). JK
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A unit vector in the direction of the particle is clearly ¥, = (sin ¢, 0, — cos ¢). From the
requirement that the path of the photon be at an angle cos ¢ to the path of the particle,
we can obtain a unit vector in the direction of the photon’s path

V., = cos OcVp + sin ¢ (cos 1 cos ¢, sinyp, cos 1 sin ¢).

Note that as expected ¥, - V., = cos fc since the second term is orthogonal to the particle’s
path. The angle ¥ corresponds to an arbitrary rotation around the particle’s path; in the
Monte Carlo it will be given a uniform distribution.

Since this vector completely determines the direction of the photon, we can use it to find
the intersection of the photon’s path with the xy plane. This is the point where the photon
strikes the photocathode. The point (z,y) is given by:

T =1%0x *sin¢+ (nx — i) * O * cos ¢ (cos&csm¢+sm@ccoswcos¢>

cos f¢ cos ¢ — sin O¢ cos 1 sin ¢

sin O sin ) )

cos f¢ cos ¢ — sin O cos ¥ sin ¢

yz(nx—z’)*@x*comﬁ(

Since we can now calculate all the relevant distances, we can easily determine the timing
information and calculate the probability of absorbtion.
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B GEANT4 Setup

GEANT14 is a very powerful simulation toolkit that simulates particle interactions with
matter. This appendix outlines the various environmental variables that are necessary set
in order to run GEANT4 on a UNIX system. For the purposes of this explanation, the
examples of commands are given for csh (i.e. setenv as opposed to export).

If you are accessing GEANT4 from an outside machine (i.e. ssh), it is crucial for visual-
ization that X-forwarding is enabled. This can be done by adding ”7-X” or ”-Y” before the
server name. To access the Open-GL drivers and to use them for rendering visualization, set
the following variables:
setenv G4VIS_BUILD OPENGLX_DRIVER 1
setenv G4VIS_USE_OPENGLX 1

setenv OGLHOME /usr/X11R6
setenv OGLFLAGS “I$OGLHOME/include”
setenv OGLLIBS “-L/usr/X11R6/lib -1GL -1GLU”

Furthermore, one must set the following environmental variables for GEANT4 to create
and run executables properly:
setenv GAWORKDIR ~/G4test
setenv G4ATMP $G4WORKDIR/tmp
setenv G4BIN $G4WORKDIR/bin

It is advisable to put these commands in a script that can simply be run at every login,
instead of having to run them separately. However, it is important to remember that on
some machines, the software has to be setup before setting environmental variables.

Now GEANT4 should run perfectly well!

More information about GEANT4 can be found at the the websites [17] and [13].
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