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1. Introduction 
This memo is an attempt to facilitate a discussion on baseline optimization at 

Braidwood.  The main factors considered in this memo are the risk presented by current 
uncertainty in ∆m2, and the relationship of rate and shape analyses to systematic error.  
The most appealing outcome would be to find a baseline that is suitable both as a phase I 
rate experiment and a phase II shape experiment. 

Throughout this memo I will use kinematic phase (defined in Appendix A) as a 
way to study the optimizations. 
 
2. Optimizing as a Function of Systematic Error 

In order to understand the transition from rate dominated sensitivity to shape 
dominated sensitivity, it is instructive to study sensitivity for rate and rate+shape analyses 
as a function of the systematic error.   

The location of the optimal baseline in the rate analysis is dependent on both the 
location of the oscillation maximum (kinematic phase = 90º) and the 1/r2 statistics fall off.  
In the systematic limit (σsys>>σstat) we expect the optimal baseline to be at the oscillation 
maximum, because the statistical error is dwarfed by the systematic error making the 1/r2 
variations immaterial.   
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Figure 1: Optimal kinematic phase, for a counting analysis, as a function of the systematic error.  
The percent systematic error (relative to statistical error) is fixed at a kinematic phase of 60º and is 
therefore a fixed absolute systematic error.  



Table 1: The percent systematic error relative to the statistical error at 60º for a range of baseline 
and relative normalization error scenarios. 

Scenario Systematic Error 
50 tons, 0.6% Rel. Norm. Error 271% 
100 tons, 0.6% Rel. Norm. Error 323% 
500 tons, 0.6% Rel. Norm. Error 722% 
1000 tons, 0.6% Rel. Norm. Error 1021% 
50 tons, 0.25% Rel. Norm. Error 113% 
100 tons, 0.25% Rel. Norm. Error 135% 
500 tons, 0.25% Rel. Norm. Error 301% 
1000 tons, 0.25% Rel. Norm. Error 425% 

 
 
Figure 1 shows the optimal baseline for the counting experiment as a function of 

the percent systematic error relative to the statistical error measured at a kinematic phase 
of 60º (the percent systematic error is measured a particular phase so that it correspond to 
a fixed absolute systematics error).  As expected, the figure shows, in the systematic limit, 
the optimal baseline is essentially 90º1.  In the statistically limited case, where σsys=0, the 
phase of the optimal baseline is not obviously intuitive.  Figure 1 shows the optimal 
baseline in this limit to be about 63º.   

In the rate+shape analysis, the location of the optimal baseline is more 
complicated.  In this case, we expect the optimal baseline to be somewhat away from 90º, 
because at that location the shape distortion is tightly coupled to the overall normalization 
error.   

Figure 2 shows baseline optimization studies for rate and rate+shape analyses in 
the statistics limit (left) and the systematics limit (right).  In the statistics limit case, the 
rate+shape sensitivity is very similar to the rate alone sensitivity.  The optimum, in this 
case, is at a slightly smaller phase than for the rate analysis, and the minimum is quite 
broad.  In the case of a systematics limited counting analysis, the optimizations for the 
rate and the rate+shape analyses are very different.  The optimum for the rate+shape is at 
about 45º with a second local minimum at about 115º.  The optimal baseline for a rate 
analysis is close to a local anti-optimal spot for the rate+shape analysis.   

The incompatibility of rate and shape optimizations in the systematic limit forms 
a powerful argument against locating the experiment at a phase of 90º, because this angle 
is only optimal for rate in the systematic limit and in that limit the shape information 
dominates the sensitivity.  The baseline Braidwood design, of 1800 meters, is essentially 
this wrong solution with a phase of 87º for the current best fit value of ∆m2 of 2.4×10-3.  

The proper way to optimize for rate alone is to choose the optimal phase for 
systematic error of about 150% with respect to the statistical error.  Beyond this level, the 
return on increased statistics is diminishing for a rate only analysis.  The 150% 
systematic error optimum is at a phase of 79º or a baseline of 1630 for the best fit ∆m2. 

                                                 
1 The slight deviation from 90º in the systematic limit is due to the fact that 3.6 MeV is not exactly the 
average of the neutrino energy spectrum. 
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Figure 2: Shows a comparison of baseline optimization studies for counting and rate+shape with no 
systematic error (left) and a systematically limited counting analysis (right), with 6 times the 
systematic error compared to statistical error as measured at a phase of 60º. 

 
3. Simultaneously Optimizing for Shape and Counting 

Figure 3 combines the optimization studies for rate and rate+shape analyses with 
150% systematic errors and a systematics limited shape analysis.  In the systematics limit 
the shape optimum is at a phase of about 45º while the optimum for a rate only analysis is 
79º.  The rate optimum is quite wide.  When you consider the effects of adding the shape 
information at 150% systematic error, the optimum both shifts to lower kinematic phase 
and widens.  Figure 3 suggests a compromise baseline range of 55º to 60º which would 
allow for an essentially optimal reach in both a rate-dominated phase I and a shape-
dominated phase II.  
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Figure 3: Baseline optimization studies for the optimal rate analysis (150% systematic error) and for 
the systematics limited shape analysis. 



 
4. Risk Associated with ∆m2 

Table 2 lists kinematics phases for several possible values of ∆m2 and far detector 
baseline.   If we consider the rate optimum (79º) and shape optimum (45º) as the upper 
and lower bounds of  acceptable baselines and give a special preference to baselines in 
the compromise region (55º to 60º), then the optimal baseline should be somewhere 
between 1250 and 1500 meters.   
Table 2: The value of the kinematic phase for various choices of ∆m2 and far detector baseline. 

Baseline ∆m2 
1000 m 1250 m 1500 m 1750 m 

3.0×10-3 60.6º 74.8º 91.0º 106.1º 
2.5×10-3 50.5º 63.2º 75.8º 88.4º 
2.0×10-3 40.4º 50.5º 60.6º 70.7º 
1.5×10-3 30.3º 37.9º 45.5º 53.1º 

 
5. Discussion 

Within the optimal region of 1250 to 1500 meters, selecting an exact baseline 
depends on how you handicap factors such as the uncertainty in ∆m2, the relative 
importance of rate and shape information, and the importance of background.  For 
example, if you believe 

1. ∆m2 will increase or 
2. shape information will be more important rate  

then you may prefer a baseline closer to 1250 meters.  On the other hand, if you believe  
1. ∆m2 will decrease or  
2. rate will be more important then shape 

then you may prefer a baseline closer to 1500 meters.   
 
The importance of background sources, like 9Li, which puts a peaked structure in the 
neutrino energy distribution, may also affect the choice of baseline.  These backgrounds 
were not considered in the rate+shape optimization studies presented in this memo.  They 
could make a shape analysis much less sensitive, by simulating or masking a shape 
deformation.  If you do not believe that such background will be significant then you 
might believe that a strong case for a shape analysis can be made.  This suggests moving 
towards the shorter baseline.  But, if you believe that 9Li will be significant you might 
also prefer a shorter baseline (at least for a flat overburden site like Braidwood), because 
it would boost the neutrino the statistics by 1/r2 while keeping the background rate 
constant.  
 
 
 
 



Appendix A: Definition of Kinematic Phase 
 

It is desirable to do a baseline optimization study in a way that is independent of a 
particular value of ∆m2.  This can be achieved by optimizing the kinematic phase.   
Kinematic phase is defined to be the argument of the oscillatory factor in the neutrino 
oscillation probability formula 

)/27.1(sin2sin)( 2
13

2
13

2 ELmP xe ∆×=→ θνν  
where Eν is replaced with the average observable neutrino energy (=3.6 MeV).  For 
convenience the phase is converted into degrees.  So 

π
180

6.3
27.1 2 ×∆×≡

MeV
LmhaseKinimaticP . 

 
Figure A1 shows baseline scans for two different values of ∆m2, as a function of 

kinematic phase.  While the absolute value of the sensitivity depends on the choice of 
∆m2 ─ primarily because a larger ∆m2 implies a closer detector (higher statistics) for the 
same phase ─ the baseline optimization is independent of the choice of ∆m2.  Table 2 
gives the kinematic phase for several values of ∆m2 and baseline.   
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Figure A1: This figure illustrates that by using the kinematic phase optimization of baseline can be 
studied independent of a specific ∆m2. 

 


