24 bit command sent to mainboard FPGA’s

T – charge injection timing phase control & adc control
E – daughter board to transmit command to mainboard
B – daughter board to retrieve 12 bits from mainboard
FPGA – which mainboard FPGA should execute the command
 000 – FPGA A0
 001 – FPGA A1
 010 – FPGA B0
 011 – FPGA B1
 1XX – all FPGAs
Tube – which 3in1 card associated with the FPGA to execute the command
 00 – 3in1 card far from patch panel
 01 – center 3in1 card
 10 – 3in1 nearest patch panel
 11 – all 3 3in1 cards
CMD – 0000 set 3in1 switch values
 0001 set 3in1 DACs
 0010 set readback shift register with 3in1 settings
 0011 set readback shift register with 3in1 DAC setting
 0100 set ADC offset High Gain plus DAC
 0101 set ADC offset High Gain minus DAC
 0110 set ADC offset Low Gain plus DAC
 0111 set ADC offset Low Gain minus DAC
 1000 set readback ADC offset High Gain plus DAC
 1001 set readback ADC offset High Gain minus DAC
 1010 set readback ADC offset Low Gain plus DAC
 1011 set readback ADC offset Low Gain minus DAC
 1100 load ADC DAC high gain of specified tube (no data field)
 1101 load ADC DAC low gain of specified tube (no data field)
 1111 global reset

DATA Field
 for command=0000
 11-10 TPH - small capacitor charge injection control bits
 10 = open switch to charge small capacitor
 01 = close switch (inject charge on capacitor)
 00 = pass through injection signal from DaughterBoard
 9-8 TPL - large capacitor charge injection control bits
 10 = open switch to charge small capacitor
 01 = close switch (inject charge on capacitor)
 00 = pass through injection signal from DaughterBoard
 7 Integrator Calibration Enable
 6-3 integrator gain switches S1-S2-S3-S4
 2 Trigger Enable
 1-0 unused

for DAC set commands
 11-0 appropriate 12BIT DAC latched value

After sending these commands the daughterboard waits for execution and then clocks back the data
Registers in FPGAs
Transmits Register Pair to DACs
OR
11 downto 0 = 12bit appropriate DAC latched value

READBACK Word (18 bits)

- tpl switch current value
- tph switch current value
- Trigger Output Enable
- S4
- S3
- S2
- S1
- Integrator Calibration Enable
- TPL_SET
- TPH_SET
- CMD
- TUBE
CIS timing phase

24 bit command sent to mainboard FPGA’s

Reset Phase Control
 Set T=1, E=0,FPGA,TUBE,CMD=0

Set Phase for a particular tube
 Set T=1, E=0,FPGA,TUBE,CMD=1 data field[5 downto 0] = phase value

Readback Phase (followed by a B=1 command)
 Set T=1, E=0,FPGA,TUBE,CMD=2

Note: T=1 commands have a 3 bit CMD field
Set ADC mode
Set T=1, E=0,FPGA,TUBE,CMD=3 d0=0 (serial) d0=1 (parallel)
parallel is the power on default

Set ADC control register
Set T=1, E=0,FPGA,TUBE,CMD=4
address=data field[11..8]
data=data field[7..0]

Readback ADC register to ADCBACK register
Set T=1, E=0,FPGA,TUBE,CMD=5
address=data field[11..8]

Readback ADCBACK register
Set T=1, E=0,FPGA,TUBE,CMD=6 (follow with a B=1 command)

Note: T=1 commands for the ADCs have a 3 bit CMD field
24 bit command sent to mainboard FPGA’s

<table>
<thead>
<tr>
<th>23</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>E</td>
<td>B</td>
<td>FPGA</td>
<td>tube</td>
<td>CMD</td>
<td>unused</td>
</tr>
</tbody>
</table>

B=1, FPGA=0,1,2, or 3
Daughter board retrieves data from designated FPGA output register.