L2 Node Status & Timeline

Kristian Hahn
University of Pennsylvania
06/11/04
Big Picture

• Phase 1
 • FrontEnd → SlinkMerger → PC (1) → L2TS → TS
 • TLD monitoring & control

• for the node, this involves ...
 • integrating the PC into the I/O chain
 • further development of node software/hardware
I/O Integration (then)

- PULSAR \rightarrow PC(algo) \rightarrow PULSAR
 - Limitations:
 - programmed VME L1A's
 - serial event processing
 - no L2TS communication
I/O Integration (now & soon)

- Node I/O integration in stages ...
 - Slink-Tx(1) → PC(algo) → L2TS → TS
 • Input: load Slink-Tx with data of ~final format
 • Output: node generates formatted decisions
 - Code tested with CJL, L2TS setup @ ~1KHz L1A rate
 - No TL2D generation

 - Slink-Tx + SVT Tx/Rx → PC(algo) → L2TS → TS
 • Algos w/ 4 buffers and delayed SVT data on a separate link
 - Now: Receive with delay and send canned decision to L2TS
 - Soon: Algo code for multiple buffers, not yet tested

- Slink-Tx + SVT Tx/Rx → Merger → PC(algo) → L2TS → TS
 • Input: PC configuration & data format as in Phase I
 • Output: TL2D sent with L2 accepts
Node Development (hardware)

• New PC and CPU's
 • Dual 3.2GHz Intel Xeon upgrade
 • default for start of Phase I
 • Dual AMD Opteron 250/2.4GHz server
 • Alternate architecture, possible performance gain
 • 32/64 bit operation
 • Integrated memory controllers at processor speed
 • NUMA configuration, fast local memory access
 • Fully utilized in 64 bit OS's only → Gentoo Linux 2.6
 • Develop alongside a working Xeon Phase I system

• S32PCI64 I/O
 • Switched from ODIN to HOLA
 • CERN drivers ported to and tested under Linux 2.6
Node Development (architecture)
Node Development (software)

- Control/Monitoring Interfaces (TLD)
 - Working model tested with Daniel
 - Config & monitoring methods still developing

- Upstream/Downstream I/O
 - Minimal changes to existing code
 - TL2D generation

- Algorithm Code
 - Prescaling, first pass done
 - Implement minimal triggers for running on first real data
 - Investigate trigger table switching mechanisms
 - Gradually rewrite the “Object Model”
 - Clean and easily maintainable C++
 - Bitfields vs. manual unpacking, saves time?
Timeline

• June, week 3:
 • Finish most I/O integration tests
 • Incorporate TLD monitoring/control in the tests
 • Code updates (data format, TL2D, monitoring/control)

• June week 4:
 • Setup new hardware, move to trigger room
 • Complete node-side monitoring/control
 • Merger testing with full TLD control?

• July, week 1:
 • Code cleanup, minimal triggers written
 • Runs with Merger and all available data paths?
Thanks!

- Cheng-Ju
 - L2TS and Sparky/Run Control

- Burkard
 - HOLA and PULSAR procurement/setup

- Frans and Sakari
 - SVT-Tx/Rx firmware

- Tomi
 - SVT-Tx latency