

A Muon Facility at RISP

Dept. of Physics, Korea University Eunil Won (원은일)

eunil@hep.korea.ac.kr

for Muon facility working group

Muon Science

From basic science to industrial applications

2014 AKPA IBS Symposium on Special Topics in Physics, Univ. of Chicago

Contents

• Science with RISP: muon science

- Muon Spin Rotation/Relaxation/Resonance for condensed matter science
- Fundamental science with Muon
- Muon Facility at RISP

Muon

Muon (µ)

- A spin 1/2 charged (+/-e) elementary particle

 $m_{\mu} = 0.1 \ m_{\text{proton}} = 200 \ m_{\text{electron}}$

- Can be prepared to have 100% spin polarization

- Muon decays: mean life time 2.2 micro sec.

 $\mu^+ \to e^+ + \overline{\nu}_\mu + \nu_e$

- Large magnetic moment: $\mu_{\mu} = 3.18 \ \mu_{proton} = 8.89 \ \mu_{neutron}$

Observations of the Failure of Conservation of Parity and Charge Conjugation in Meson Decays: the Magnetic Moment of the Free Muon*

RICHARD L. GARWIN,[†] LEON M. LEDERMAN, AND MARCEL WEINRICH

Physics Department, Nevis Cyclotron Laboratories, Columbia University, Irvington-on-Hudson, New York, New York (Received January 15, 1957)

Measurement of

- parity violation

- muon spin, g-factor, decay asymmetry and

The 1st muon spin rotation spectrum

was there any evidence for an altered moment. It seems possible that polarized positive and negative muons will become a powerful tool for exploring magnetic fields in nuclei (even in Pb, 2% of the μ^- decay into electrons⁹), atoms, and interatomic regions.

Phys. Rev. 105, 1415 (1957)

-.20

+. 20

0

AMPERES - PRECESSION FIELD CURRENT

 $1-\frac{1}{3}\cos\theta$

μ+

1.4

5.1 ELD

APPLIED

ZERO

2

RELATIVE

COUNTS

. 0

8

. 7

-,60

-.40

Range of muons in matter

P. Bakule and Elvezio Morenzoni, Contemporary Physics, 45, 203 (2004)

Condensed Matter Science: µSR

μSR

Muon Spin Rotation/ Relaxation/Resonance = μSR

- Powerful tool for probing magnetic properties of matter
- Positron is emitted
 preferentially in the spin
 direction of the muon

from "µSR brochure" by J.E Sonier, Simon-Fraser-Univ., Canada, 2002, http://musr.org/intro/musr/muSRBrochure.pdf

Principle of μ SR

The signal corresponding the time evolution can be directly extracted by looking at the asymmetry function:

$$A(t) \equiv A_0 P(t) = \frac{N_B(t) - N_F(t)}{N_B(t) + N_F(t)}$$

- Asymmetry distribution contains the information about the precessing and relaxing muon spins in the total local field
- Fourier transformation to frequency domain allows measurement of the fields

$$\omega = \gamma_{\mu} B_{\rm loc}$$

Excellent Science with µSR

Courtesy of Byoung-Jin Suh (Catholic Univ. of Korea)

- About 15 papers per year in top class journals: PRL, Nature, Science, JACS, Angew. Chem. Int. Ed.
- More than 70 papers/year in PRB (dominated by PSI)

0.20

Angewandte

Chiral Induction

DOI: 10.1002/anie.200904107

Chiral Induction in Lyotropic Liquid Crystals: Insights into the Role of Dopant Location and Dopant Dynamics**

Ute C. Dawin, Herbert Dilger, Emil Roduner, Robert Scheuermann, Alexey Stoykov, and Frank Giesselmann*

Figure 1. Schlieren texture and model of the nematic (N) LLC host phase with disk-like micelles (left). Fingerprint texture and model of the chiral nematic (N*) phase; micelles represent the helical modulation of the director **n** with pitch *P* induced by doping the host phase with 4.37% *R*-MA (right).

Science 332, 937 (2011)

Dimensionality Control of Electronic Phase Transitions in Nickel-Oxide Superlattices

A. V. Boris,¹* Y. Matiks,¹ E. Benckiser,¹ A. Frano,¹ P. Popovich,¹ V. Hinkov,¹ P. Wochner,² M. Castro-Colin,² E. Detemple,² V. K. Malik,³ C. Bernhard,³ T. Prokscha,⁴ A. Suter,⁴ Z. Salman,⁴ E. Morenzoni,⁴ G. Cristiani,¹ H.-U. Habermeier,¹ B. Keimer¹*

2014 AKPA IBS Symposium on Special Topics in Physics, Univ. of Chicago

nature materials

ARTICLES

Direct measurement of the electronic spin diffusion length in a fully functional organic spin valve by low-energy muon spin rotation

A. J. Drew^{1,2}*, J. Hoppler^{1,3}, L. Schulz¹, F. L. Pratt⁴, P. Desai², P. Shakya², T. Kreouzis², W. P. Gillin², A. Suter⁵, N. A. Morley⁶, V. K. Malik¹, A. Dubroka¹, K. W. Kim¹, H. Bouyanfif¹, F. Bourqui¹, C. Bernhard¹, R. Scheuermann⁵, G. J. Nieuwenhuys⁵, T. Prokscha⁵ and E. Morenzoni⁵

nature LETTERS NUBLISHED ONLINE: 5 DECEMBER 2010 | DOI: 10.1038/NMAT2912

Engineering spin propagation across a hybrid organic/inorganic interface using a polar layer

L. Schulz¹, L. Nuccio², M. Willis², P. Desai², P. Shakya², T. Kreouzis², V. K. Malik¹, C. Bernhard¹, F. L. Pratt³, N. A. Morley⁴, A. Suter⁵, G. J. Nieuwenhuys⁵, T. Prokscha⁵, E. Morenzoni⁵, W. P. Gillin²* and A. J. Drew^{1,2}*

Depth (Å)

nature LETTERS materials PUBLISHED ONLINE: 21 MARCH 2010 | DOI: 10.1038/NMAT2715

Spatially homogeneous ferromagnetism of (Ga, Mn)As

S. R. Dunsiger^{1,2}, J. P. Carlo¹, T. Goko^{1,3}, G. Nieuwenhuys⁴, T. Prokscha⁴, A. Suter⁴, E. Morenzoni⁴, D. Chiba^{5,6}, Y. Nishitani⁶, T. Tanikawa^{5,6}, F. Matsukura^{5,6}, H. Ohno^{5,6}, J. Ohe^{7,8}, S. Maekawa^{7,8} and Y. J. Uemura^{1*}

Korea Univ. Dept. of Physics, Eunil Won

12

World-wide µSR Facility

from "µSR brochure" by J.E Sonier, Simon-Fraser-Univ., Canada, 2002, http://musr.org/intro/musr/muSRBrochure.pdf

Fundamental Science with Muon

Electric Dipole Moment

- Permanent EDM for an elementary particle: P and T violation (also CP violation under CPT invariance)

- Non-zero EDM measurement: evidence of physics beyond Standard Model

History of EDM Searches

Muon EDM Efforts

Spin precession vector in static E and B fields with $\vec{\beta} \cdot \vec{B} = 0, \ \vec{\beta} \cdot \vec{E} = 0$

$$\vec{\omega} = -\frac{e}{m} \left\{ a\vec{B} + \left(\frac{1}{\gamma^2 - 1} - a\right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B}\right) \right\}$$

Three approaches

- Magic momentum (g-2+EDM): BNL E821, Fermilab $\vec{\omega} = -\frac{e}{m} \left\{ a\vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right\}$ Less sensitive to EDM (10⁻²¹ e cm level) - Zero E-field (g-2+EDM): J-PARC E34 $\vec{\omega} = -\frac{e}{m} \left\{ a\vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) \right\}$

- Spin frozen (EDM only): introduce radial E to remove $\vec{\omega} = -\frac{e}{m}\frac{\eta}{2}\left\{\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c}\right\}$ g-2 term (Phys. Rev. Lett. 93, 052001 (2004))

Muon EDM Efforts

"Spin frozen" technique: for future prospect

Spin frozen µ-EDM

J-PARC proposal: LOI 22, A. Silenko et al. (2003)

- p = 500, 350 MeV/c
- B = 0.25 T
- E = 2 MV/m
- R = 7 m (w/ PRISM FFAG)

Sensitivity $\sigma(d_{\mu}) = 8 \times 10^{-25}$ e cm

Spin frozen µ-EDM

PSI proposal: A. Adelmann, et al., J. Phys. G, 37 085001 (2010)

http://amas.web.psi.ch/projects/muonedm/ Artist's impression (A. Streun)

p = 125 MeV/c B = 1 T E = 0.64 MV/m R = 0.42 m N = $2x10^5$ /s Sensitivity: $\sigma(d_{\mu})$ = $5x10^{-23}$ e cm /year

A "compact storage ring" concept

Spin frozen µ-EDM

- Planned g-2 exp. (Fermilab, J-PARC) aim at sensitivity of σ(d_µ) ~ 10⁻²¹ e cm
- Spin frozen technique seems the way to go (?)
- If one sticks with linear mass scaling: σ(d_µ) ~ 10⁻²⁶ e cm at least desired (?)
 - Quadratic, cubic scenarios exist

Systematics

Muon Science @ RISP

Reminder

• RISP: 660 uA, 600 MeV for proton

 Note: this is slightly less than half of beam power of PSI cyclotron (1.3 MW)

Muon yield will be less then PSI yield - New flexible design with ideas is desired

Our Simulation Shows

Muon transport

Magnetic Field Validation

g4beamline

• CST

- Simulated magnetic field maps are compared

- Generally good agreement with CST

Transport in Detail

- "solenoid only" option

g4beamline / G. Yu (KU->SNU)

Epi-thermal Beam Line

- Einzel lens design simulation (CST)

Kyungmin Lee, Jihoon Choi/KU

Momentum smearing (10mm gaussian beam) : unit (mm)

Recent Developments (up to previous went into TDR)

Beyond Default Design

Increase of surface
 µ by thinner
 targets: 1.6 times
 increase seen

Virtual detector

Targets in solenoid: O(20) increase seen

50

100

150

200

250

300

Can it work? Radiation/heat

MUSIC facility @ RCNP/Osaka (target inside solenoid)

My Option 1 thickness (total 20 mm): 5 mm x 4

Muon Facility Working Group

• µSR

Mansoo Choi, Sanghoon Lee, Jaeho Jeong (KU), W. Higemoto (TBC, JAEA/J-PARC)

Fundamental science

E. Won, ByeongRok Ko (KU), Bongho Kim, Seonho Choi (SNU), T. Mibe, N. Saito (KEK)

μSR

• Our initial studies Critical Interfaces explored with µSR

LAO/STO Interface

- Insulator + Insulator : metal
- Ferromagnetism

Topological Matter/Normal Matter

- Topological insulator /Normal superconductor
- Topological superconductor / Magnetic insulator Sample preparation

M. S. Choi (KU local workshop March 2014)

Research Workflow

32

To RISP: μSR

• Ultra-slow polarized muon facility

It has much bigger science impact to the society than with just surface muon facility

Design to host multiple beam lines/spectrometers (in future)

PSI has 6 different spectrometers for user Note that world-wide muon beam lines are overbooked

- : no beam at PSI in 2014 at all
- : call for beam at J-PARC for late 2014 on July 2014

Fundamental Science

Science case we have been developing for example

- Muon EDM
- Muonium oscillation (not today)
- We are not limited to above of course

Fundamental Science

• Muon EDM with RISP

Low emittance beam by re-acceleration of epi-thermal muons
 p = 300 MeV/c (a semi-random number from J-PARC g-2)

Ideal beam structure: pulsed at 1-10 kHz
 Muon lifetime (boosted) + DAQ dead-time
 J-PARC beam is pulsed at 25 Hz and is inefficient for μEDM

Don't get too much excited, I'm just playing with numbers

Summary

• RISP is under construction

- We are considering a muon facility for both condensed matter and fundamental science applications
- A careful design to host both µSR and fundamental science programs will be great

Particle Physics @ µ Facilities

2014 AKPA IBS Symposium on Special Topics in Physics, Univ. of Chicago

Extra Slides

Ultra-slow Muon Generation

Beam test at TRIUMF: Muonium yield estimation

KEK+RIKEN+TRIUMF + E. Won, W. Lee (KU): 2013 Oct.

Muonium Oscillation Exp.

- Some of us have been looking at a muonium oscillation experiment (but not limited to it)

Phys. Rev. Lett. 82, 49 (1999)

 $-\mu^{-}$ - Various new fundamental interaction can cause Mu to

- interaction can cause Mu to anti-Mu transition
- Not updated since 1999
- A new technique to reject
 accidental and irreducible
 backgrounds more effectively
 needed

Muonium Oscillation Exp.

arXiv:1307.5787 "Charged Lepton Flavor Violation: An Experimenter's Guide"

- by R. Bernstein and P. Cooper (Fermilab)
- excellent review of cLFV experiments

Latest limit: Phys. Rev. Lett. 82, 49 (1999)

- typical counter type
- suffer from rate-dependent background
- $< 3x10^{-3}$ G_F was achieved

- M. Aoki, NIM A 503, 258 (2003)
- a radiochemical approach
- antimuonium absorbed in tungsten nucleus (μ^- W $\rightarrow v_{\mu}$ ¹⁸⁴Ta)
- $< 10^{-4} G_F$ can be possible

arXiv:1307.5787

- improve counter type experiment
- use modern technology
- could reduce limit by 10⁻² (but with pulsed beam)

Muonium Oscillation Exp.

One slide R&D status

✓ Muonium production R&D is starting with J-PARC people

√ Improvement from MWPC

Improvement from CsI and faster timing

✓ Active target ?

Continuous vs. Pulsed

Continuous

At RISP the accelerator structure (80 MHz microstructure) and the pion lifetime (26 ns) leads to a practically continuous surface muon beam

http://people.web.psi.ch/morenzoni/ FS-2012/Chapter5-MuonSpinRotation-1.pdf

Fig. 5-3: Build up of the muon rate at PSI.

one muon at a time (otherwise it is background)

Pulsed

- At a pulsed machine all the muons are contained in a pulse (50-100 ns wide) with low repetition rate (25-50 Hz)

- This allows a higher rate (all the decay positrons of a pulse are measured at once)

- But only one positron in a detector or in the case of more than one, you have to get the time stamp on them

This requires a high segmentation of the positron spectrometer (HEP knows how to do it)

1) By moderation in thin layers of cryosolids

- More suitable for "continuous" accelerator such as RISP and PSI

Muonium is a bound state of μ⁺e⁻ and called Mu

2) By laser resonant ionization of muonium

- More suitable for "pulsed" accelerator such as J-PARC and Project X

1) By moderation in thin layers of cryosolids Moderator

1) By moderation in thin layers of cryosolids

This is a 2-step process

i) Put a foil (O(100) µm thick) in the muon's flight path: this will slow down the muon but the energy spectrum of muons exiting the foil is very broad

> Coulomb collisions with target atoms (e-h pair, excitation creation)

ii) Then place some well-selected materials (moderator, usually < 1 μ m thick) and it will lead to a preferential emission of muons at energies of a few eV

S OT Surface Muons ~ 4 MeV ~ 100% polarized for's flight the oil is very ~ 100 μm Ag ~ 500 nm < 6 K s-Ne, Ar, s-N₂ P. Bakule and Elvezio Morenzoni, Contemporary Physics, 45, 203 (2004)

2) By laser resonant ionization of muonium What is muonium? (a μ+μ- bound state? NO) : muonium = μ+e-

2) By laser resonant ionization of muonium Generation of muonium:

Incident surface muons to a target generate slower muons and muonium atoms

Ultra-slow Muon Generation

2) By laser resonant ionization of muonium

Ultra-slow Muon Generation

2) By laser resonant ionization of muonium

Moderator vs. Laser

Kazutaka Nakahara (UMD, JLAB seminar 8/28/2009)

	Laser Resonant Ionization	Moderator
Location	J-PARC, RIKEN/RAL	PSI, TRIUMF
Beam Energy	0-30 keV	0-30 keV
Energy Spread	0.2 eV	10 - 100 eV
Beam Size	0.5-1 mm	10 - 15 mm
Temporal Resolution	100 ps - ~ ns	10 ns

2014 AKPA IBS Symposium on Special Topics in Physics, Univ. of Chicago

