

AKPA - IBS Symposium on Special Topics in Physics, May 9-10, 2014, The University of Chicago

Superconducting RF Cavities Development at Argonne National Laboratory

Sang-hoon Kim on behalf of Linac Development Group in Physics Division at Argonne National Laboratory

May 10, 2014

Contents

- Introduction to Superconducting RF (SRF) Accelerating Cavity
- SRF Quarter-Wave Resonators (QWR) for Argonne Tandem Linear Accelerator System (ATLAS) Intensity Upgrade

Why Superconducting RF Cavity?

Particle Acceleration using Resonant Cavity

- Accelerators for high intensity beams ⇒ CW operation
 - Normal Conducting: high wall loss so extremely high cooling power
 - Superconducting: low wall loss then cost efficient

Which Type of Accelerating Structure?

RF Loss on Superconductor Surface

- Resistance in SC
 - DC: zero resistance
 - RF(AC): finite resistance
- Surface Resistance
 - BCS resistance: material property
 - Residual resistance:
 Damaged layer, defects,
 foreign materials, hydrides/oxides,
 trapped magnetic flux, ...

Pure and Clean Surface

(Courtesy of S. Calatroni)

5

Limitation of Peak Fields

- Thermal Breakdown
 - Defects in the surface
 - Heated then quenched
 - Limiting B_{peak}

(Courtesy of C. Z. ANTOINE)

- Field Emission
 - Defects in the surface and foreign particles on the surface
 - Q degraded and strong X-ray emission
 - Limiting E_{peak}

(Courtesy of R. Geng)

Pure, Clean, and Smooth Surface

ATLAS: Facility for Nuclear Physics Experiments

- The world's first superconducting linear accelerator for heavy ions since 1978.
- Accelerating rare isotopes as well as heavy ions
- For low- and medium-energy nuclear physics such as the physical properties of the nucleus, the core of matter, the fuel of stars.

QWR Cryomodule for ATLAS Intensity Upgrade

- Cryomodule: Modularized cryostat containing multiple SRF cavities (and SC magnets).
- Seven β = 0.077, 72.75 MHz QWRs and Four 9 T SC solenoids.
- Unique features compared with other coaxial cavities
 - Novel geometries to reduce B_{peak}.
 - Electro-polished.

5.2 m long x 2.9 m high x 1.1 m wide

Electromagnetic Design of the QWR

Peak surface electric and magnetic fields are minimized, e.g. tapered sections of inner and outer conductors reduce the peak magnetic field by 20% compared with cylindrical shape.

Fabrication and Treatment of the QWR

- Fabrication
 - Soaking and inspection
 - Hydroforming
 - Electrical Discharge Machining (EDM) cut
 - Etching after EDM cut
 - Electron Beam Welding (EBW)
 - LHe Jacket Welding
- Treatment
 - Electro polishing
 - Ultrasonic cleaning
 - High pressure rinsing
 - Baking

EDM

EBW

Electro-Polishing

AKPA - IBS Symposium on Special Topics in Physics, May 9-10, 2014

AFTER 12HRS OF EP 150µm Nb REMOVED

Performance of the QWRs

We achieved higher Q factors than design values, moreover, it is capable of producing 3^{4} MV at this beta and frequency ($\beta = 0.077, 72.75$ MHz QWR).

Assembly

Cavity string assembly in cleanroom

Lid assembly outside of cleanroom

<image>

Performance of the QWRs in ATLAS

 Accelerating voltage was average 2.5 MV/cavity as per beam measurements and the 4.5 K LHe consumption was 40 W (cf. design ~ 85 W): The cavities also show good performance in the cryomodule installed in ATLAS.

Summary

- We have completed development of β = 0.077, 72.75 MHz Quarter-Wave Resonators Cryomodule for ATLAS Intensity Upgrade.
- With the novel geometry and EP as well as many other careful steps in fabrication and treatment, we achieved record high accelerating voltages with relatively low cryogenic loads: 2.5 MV per cavity and total cryogenic load is 40 W.
- We are now developing PXIE Half-Wave Resonators Cryomodule for Proton Improvement Plan-II at Fermilab.

AKPA - IBS Symposium on Special Topics in Physics, May 9-10, 2014

Acknowledgement

- PHY: P.N. Ostroumov, M.P. Kelly, Z.A. Conway, S.M. Gerbick, M.J. Kedzie, K. Shepard, B. Mustapha, S.V. Kutsaev, G.P. Zinkann, S.W.T. Macdonald, S.I. Sharamentov, Y. Luo, and ATLAS operation group
- HEP: T.C. Reid, R.C. Murphy
- NE: J.W. Morgan, R. Fischer
- APS-ASD: W.G. Jansma, J.D. Fuerst, K.-J. Kim
- The others I am missing here...
- Vendors:

ANL central shop, Advanced Energy System, Inc., ADRON Tool Co., Meyer Tool & Manufacturing, Sciaky, Inc., ...