

Holographic Principle -towards the new paradigm-

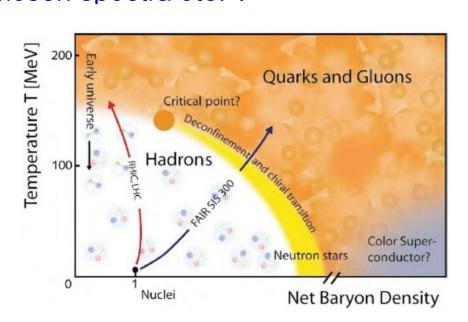
Bum-Hoon Lee Center for Quantum Spacetime(CQUeST)/Dept. of Physics Sogang University Seoul, Korea

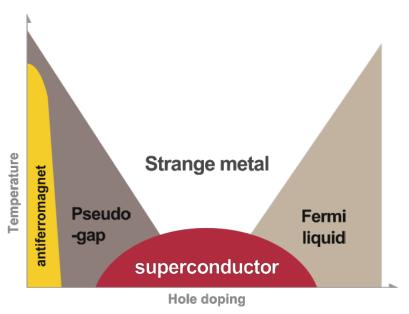
I. Introduction: Motivation & Basics

Q: How to understand the nonperturbative physics of the strongly interacting systems?

Ex) In QCD, how to explain confinement, chiral symmetry breaking, phases (with or w/o chemical potential), meson spectra etc.?

Ex) How to understand the phenomena in the Strongly correlated condensed matter systems?





AdS-CFT Holography: 3+1 dim. QFT ⇔ 4+1 Classical Gravity Theory

 Useful tool for strongly interacting systems such as QCD, Composite (Higgs) particles?, Condensed Matter, etc.

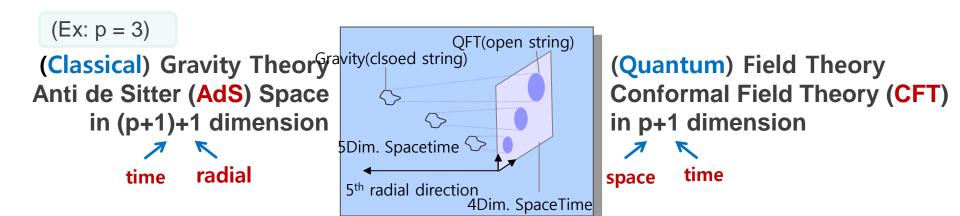
Contents

- Introduction Motivation and Basics
 String theory as a tool for the strongly interacting systems
- II. Holography Principle AdS/CFT
- III. Application of the Holographic Principle
 - 1. AdS/QCD
 - 2. AdS/CMT
 - 3. Application to Nonequilibrium Physics
- IV. Summary

II. Holography Principle (AdS/CFT Correspondence)

"2nd revolution of the string theory (1994)

Quantum Field Theory in a given space time dimension (Ex):3+1=4 dim) can be equivalently described by the classical gravity theory in one higher dimensional spacetime (Ex): 4+1=5dim).



· Quantum Field Theory is the natural language to describe the many-body system

Main idea on holography through the Dp branes

Dp-brane carry tension(energy) and charges (for p+2 form)

Dp brane's low E dynamics by fluctuating Open Strings

⇒ SUGRA on AdS (p+2) space

Dp-branes = (p+1)dim. SU(Nc) SYM

#Dp-branes = Nc

Question:

3+1 dim. QFT (large Nc)

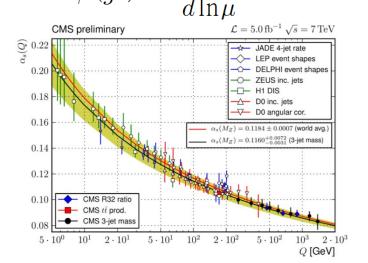
4+1 dim. Effective Gravity description

(0, 1, ..., p)

Naïve Answer: Coupling constants are running in QFT!

Energy scale in QFT corresponds to the parameter in extra "dimension" or radial direction in AdS5 space

$$g_s = e^{\phi(r)} = g_{YM}^2(\mu)$$



New Paradigm for the Strongly Interacting Quantum System

'Size' L of the 5dim is proportional to the coupling constant λ of the 4 dim.

4Dim QFT	Perturbative : Easy	Nonperturbative : Hard
Coupling constant λ	$\lambda \ll 1$	$\lambda\gg 1$
Size of the paramenter L	$L\ll 1$	$L\gg 1$
5Dim parameter	Quantum Gravity: Hard	Classical Gravity: "Easy"

· Strongly Interacting Quantum System ($\lambda >> 1$) \leftrightarrow Classical Gravity (L >> 1)

New Methodolgoy : 4can use the 5 dim. classical gravity description for the 4dim. strongly interacting system.

Parameter (
$$g_{Y\!M}^2$$
 , N)

$$\left(egin{array}{ccc} 4\pi g_{s}N=rac{R^{4}}{lpha^{'2}}=\lambda=g_{YM}^{2}N \end{array}
ight) \qquad \left(egin{array}{ccc} g_{s} & , & R \end{array}
ight)$$

Ex) Nc of D3 branes

N=4 SU(Nc) SYM

SUGRA on AdS5 x S5

Comments

• With $\beta(g^2) = 0$ (conf. inv.)

In Anti-deSitter Space

N=4 SU(Nc) SYM

SUGRA on AdS5 x S5

Nc of D3 branes

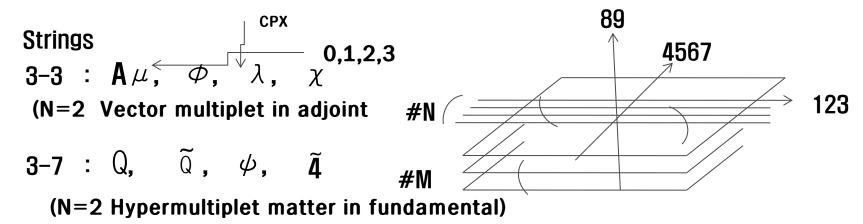
$$(g_{YM}^2, N)$$
 $4\pi g_s N = \frac{R^4}{\alpha'^2} = \lambda = g_{YM}^2 N$ (g_s, R)

• With $\beta(g^2) \rightarrow 0$ (conf. inv.) (ex) QCD

In asymptotic AdS Space
?? (in asymptotic AdS Space)

Intersecting D-Branes - Flavors, mesons, etc.

Ex) D3-D7 Low energy dynamics \rightarrow N=2 SYM with #M hyper



7-7 open strings : Low energy dynamics for D7 branes (DBI action)
$$S_{D7} = -\mu_7 \int d^8\xi \, \sqrt{-\det{(P[G]_{ab}+2\pi\alpha' F_{ab})}} + \frac{(2\pi\alpha')^2}{2} \mu_7 \int P[C^{(4)}] \wedge F \wedge F$$
 Still far from QCD !
$$\mu_7 = [(2\pi)^7 g_s \alpha'^4]^{-1}$$

Extension of the AdS/CFT

- the gravity theory on the asymptotically AdS space
 - -> modified boundary quantum field theory (nonconf, less SUSY, etc.)
- Gravity w/ black hole background corresponds to the finite T field theory

AdS/CFT Dictionary

Witten 98;

Gubser, Klebanov, Polyakov 98

Parameters (
$$g_s$$
 , R) $4\pi g_s N = rac{R^4}{{lpha'}^2} = \lambda = g_{YM}^2 N$ (g_{YM}^2 , N)

Partition function of bulk gravity theory (semi-classial)

$$\begin{split} Z_{str}[\phi_0(x)] &= \int_{\phi_0} \mathcal{D}\phi \exp\left(-S[\phi, \mathbf{g}_{\mu\nu}]\right) \\ &= e^{-S(\phi_{cl}[\phi_0])} \end{split}$$

$$\phi(t, \mathbf{x}; u = \infty) = u^{\Delta - 4}\phi_0(t, \mathbf{x}) \quad \phi$$

 ϕ_0 bdry value of the bulk field

Generating functional of bdry

QFT for operator \bigcirc

$$Z[\phi_0(x)] = \left\langle \exp \int_{boundary} d^d x \phi_0 \mathcal{O} \right\rangle$$
$$= \int \mathcal{D}[\Phi] \exp\{iS_4 + i \int \phi_0(x) \mathcal{O}\}$$

 ϕ_0 : source of the bdry op. \bigcirc

•
$$\phi$$
: scalar \rightarrow $S = \int d^4x du \sqrt{-g} \left(g^{ab}\partial_a\phi\partial_b\phi - m^2\phi_*^2\right) \phi(u) \sim u^{4-\Delta}\phi_0 + u^{\Delta}\langle\mathcal{O}\rangle$

- Correlation functions by $\frac{\delta^n Z_{\text{string}}}{\delta \phi_0(t_1, \mathbf{x}_1) \cdots \delta \phi_0(t_n, \mathbf{x}_n)} = \left\langle T \, \mathcal{O}(t_1, \mathbf{x}_1) \cdots \mathcal{O}(t_n, \mathbf{x}_n) \right\rangle_{\text{field theory}}$
- 5D bulk field Φ (t, x, u) \longleftrightarrow Operator \bigcirc (t, x) w/ 5D mass $E(\lambda, J_1, J_2, \cdots) \longleftrightarrow$ w/ Operator dimesion $\Delta(\lambda, J_1, J_2, \cdots)$
- 5D gauge symmetry ←→ Current (global symmetry)
- Radial coord. r in the bulk is proportional to the energy scale E of QFT

\mathcal{O} (Operator in QFT) <-> ϕ (p-form Field in 5D)

$$(\Delta - p)(\Delta + p - 4) = m_5^2$$
 Δ : Conformal dimension m_5^2 : mass (squared)

4D: $\mathcal{O}(x)$	5D: $\phi(x, z)$	p	Δ	$(m_5)^2$
$\bar{q}_L \gamma^\mu t^a q_L$	$A^a_{L\mu}$	1	3	0
$ar{q}_R \gamma^\mu t^a q_R \ ar{q}_R^\alpha q_L^eta$	$A_{R\mu}^{\overline{a}}$	1	3	0
$ar{q}_R^{lpha}q_L^{eta}$	$A^a_{L\mu} \ A^a_{R\mu} \ (2/z) X^{\alpha\beta}$	0	3	-3
$-\frac{\langle { m Tr} G^2 angle}{ m Gluon~co}$	nd . dilaton	0	4	0
$rac{q_L \gamma^\mu q_L}{ar{q}_R \gamma^\mu q_R}$ baryon c	density vector w/ U	(1) 1	3	0

fields in gravity

massless dilaton

Ex)

- scalar field with $m^2 = -\frac{3}{R^2}$
- m=0 vector field A_{μ} in the

 $SU(N_f)$ gauge group

operators of QCD

- gluon condensation $\langle {
 m Tr} G^2 \rangle$
- chiral condensation $ar{q}_R q_L$
- mesons in the

 $SU(N_f)$ flavor group

Temperatue

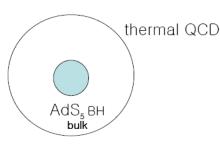
- Black hole gemometry
- $T = \frac{r_T}{\pi P^2}$

E. Witten (1998)

$$ds_5^2 = \frac{1}{z^2} \left(f^2(z) dt^2 - (dx^i)^2 - \frac{1}{f^2(z)} dz^2 \right),$$

Flavor degrees of freedom
$$f^2(z) = 1 - (\frac{z}{z_T})^4$$
 $T = \frac{1}{\pi z_T}$

$$f^2(z) = 1 - (\frac{z}{z_T})^4$$
 $T = \frac{1}{\pi z_T}$



Adding probe brane

•
$$y(\rho) = M_q + \frac{\langle \bar{\psi}\psi \rangle}{\rho^2} + \cdots$$
 $(\rho >> 1)$

Chemical potential or Density

- Turning on U(1) gauge field on probe brane
- $A_{\mu} \leftrightarrow \langle J^{\mu} \rangle = \bar{\psi} \gamma^{\mu} \psi$
- $A_t = \mu + \frac{Q}{\rho^2} + \cdots$ $(\rho >> 1)$

Source of gauge field

- End point of fundamental strings
- Physical object which carry U(1) baryon charge
- Fundamental strings which connect probe brane and black hole \rightarrow Quarks
- Fundamental strings which connect probe brane and baryon vertex \rightarrow Baryons

III. Application

Needs the dual geometry!.

Approaches:

- Top-down Approach: rooted in string theory Find brane config. or SUGRA solution giving the gravity dual (May put the probe brane)
 Ex) Nc of D3(D4) + M of D7(D8), 10Dim. SUGRA solution etc.
- Bottom-up Approach:phenomenological
 Introduce fields, etc. (as needed based on AdS/CFT)
 5D setup → 4D effective Lagrangian

1. AdS/QCD (Holographic QCD)

Witten '98

Goal: Using the 5 dim. dual gravity, study 4dim. strongly interacting QCD such as spectra & Phases, etc.

parameters (Nc, Nf, mq, T and μ , χ -symm., gluon condensation, etc.)

Ex) finte temperature for the pure Yang-Mills theory without quark matters

Low T QCD Phase transition High T

	Confinement	Deconfinement
QCD (4Dim)	Hadron	Quark-Gluon
Gravity (5Dim)	Thermal AdS	AdS Black Hole

Hawking-Page transition

=Transition of bulk geometry

Hawking-Page phase transition

[Herzog , Phys.Rev.Lett.98:091601,2007]

The geometry is described by the following action
$$S = \frac{1}{2\kappa^2} \int d^5 x \sqrt{g} \left(-\mathcal{R} + 2\Lambda \right)$$

The geometry with smaller action is the stable one for given T.

$$\Delta S = \lim_{\epsilon \to 0} (S_{AdSBH} - S_{tAdS}) = \frac{\pi z_h R^3}{\kappa^2} \left(\frac{1}{z_{IR}^4} - \frac{1}{2z_h^4} \right)$$
 > 0 for T < Tc < 0 for T>Te

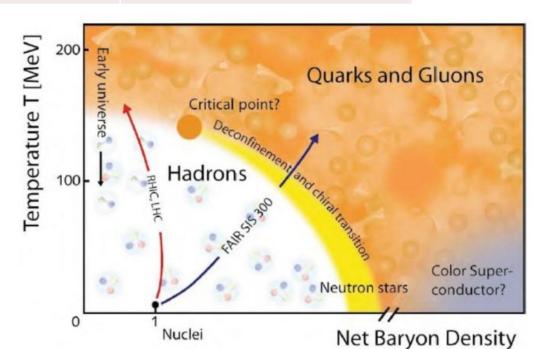
Holographic QCD for finite chemical potential

Low T QCD Phase transition High T

	Confinement	Deconfinement
QCD (4Dim)	Hadron	Quark-Gluon
Gravity (5Dim)	thermal & charged AdS	RNAdS Black Hole

Hawking-Page transition (BHL, Park, Sin JHEP 0907, (2009))

Gravity (5Dim) Thermal AdS AdS Black Hole



For the fixed chemical potential

For the fixed number density

dimensionless variables

$$\tilde{z}_c \equiv \frac{z_c}{z_{IR}},$$

$$\tilde{\mu}_c \equiv \mu_c z_{IR},$$

$$\tilde{T}_c \equiv T_c z_{IR},$$

•Legendre transformation,

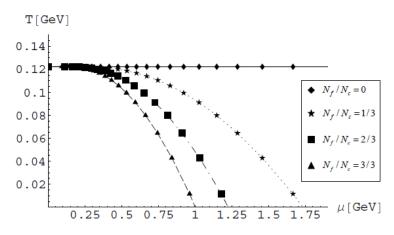
the Hawking-Page transition occurs at

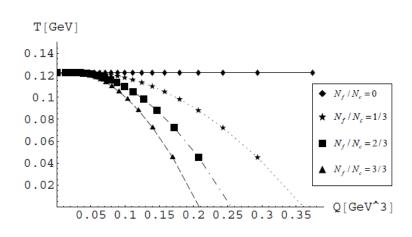
$$\tilde{\mu}_{c} = \sqrt{\frac{3N_{c}}{N_{f}}} \frac{(1 - 2\tilde{z}_{c}^{4})}{\tilde{z}_{c}^{2}(9\tilde{z}_{c}^{2} - 2)},$$

$$\tilde{T}_{c} = \frac{1}{\pi\tilde{z}_{c}} \left(1 - \frac{1 - 2\tilde{z}_{c}^{4}}{9\tilde{z}_{c}^{2} - 2}\right).$$

$$\tilde{Q}_{c} = \sqrt{\frac{3N_{c}}{2N_{f}}} \frac{(1 - 2\tilde{z}_{c}^{4})}{\tilde{z}_{c}^{4}(5\tilde{z}_{c}^{2} - 2)},$$

$$\tilde{T}_{c} = \frac{1}{\pi\tilde{z}_{c}} \left[1 - \frac{\tilde{z}_{c}^{2}}{2} \frac{(1 - 2\tilde{z}_{c}^{4})}{(5\tilde{z}_{c}^{2} - 2)} \right]$$

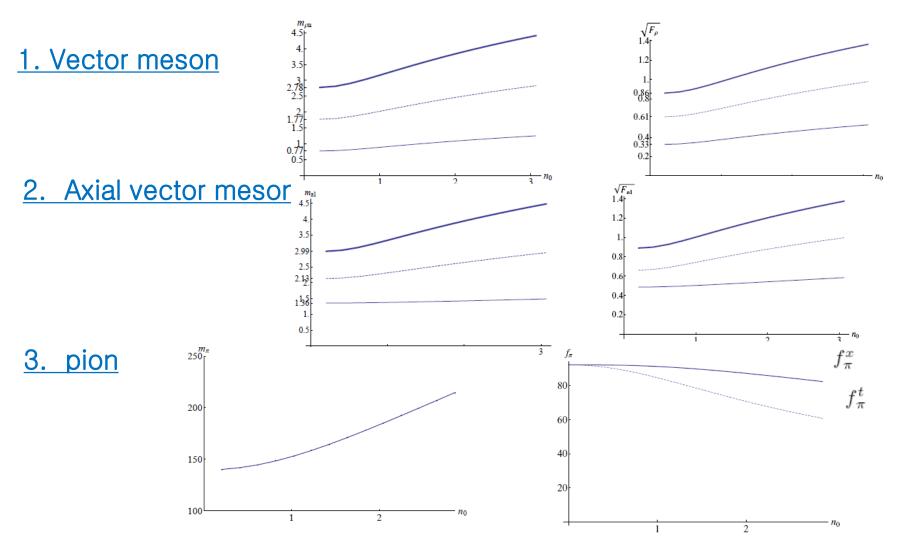




Turn on the fluctuation in bulk corresponding the meson spectra in QCD

$$\Delta S = \int d^5 x \sqrt{G} \operatorname{Tr} \left[|DX|^2 - \frac{3}{R^2} |X|^2 + \frac{1}{4g_5^2} \left(F_L^2 + F_R^2 \right) \right] \quad M_X^2 = -3/l^2$$

X is the dual to the quark bilinear operator <qbar q >.



Chiral Condensate Effect (w/ & w/o Density Effect)

C. Park, B-HL, S. Shin, arXiv:1112.2177.

The gravity action in the bulk is

$$S = \int d^5x \sqrt{-G} \left\{ \frac{1}{2\kappa^2} \left(\mathcal{R} - 2\Lambda \right) - \text{Tr} \left[|D\Phi|^2 + m^2 |\Phi|^2 + \frac{1}{4g^2} \left(F_{MN}^{(L)} F^{(L)MN} + F_{MN}^{(R)} F^{(R)MN} \right) \right] \right\}$$

$$g^2 = \frac{12\pi^2 R}{N_c} \qquad \kappa^2 = \frac{\pi^2 R^3}{4N_c^2} \qquad N_f = 2 \quad N_c = 3 \qquad m^2 = -\frac{3}{R^2} \qquad \Lambda = -\frac{6}{R^2}$$

We set

$$\Phi(z) = \frac{1}{2\sqrt{N_f}}\phi(z)\mathbf{1}_f e^{i2\pi^a(z)T^a}$$

The background geometries of our interest are obtained from a gravity action with the massive scalar field and U(1) gauge interaction.

$$\mathcal{S} = \int d^5x \sqrt{-G} \left\{ \frac{1}{2\kappa^2} (\mathcal{R} - 2\Lambda) - \frac{1}{4} \left[(\partial_M \phi)^2 + m^2 \phi^2 \right] - \frac{1}{4g^2} F_{MN} F^{MN} \right\}$$

an ansatz for the asymptotic AdS metric in the Fefferman-Graham coordinate as

$$ds^2 = \frac{R^2}{z^2} \left[-F(z)dt^2 + G(z)dx^2 + dz^2 \right]$$
 We take R = 1.

$$A_0 = A_0(z)$$
 $A_M = 0$ M = 1, 2, 3, z

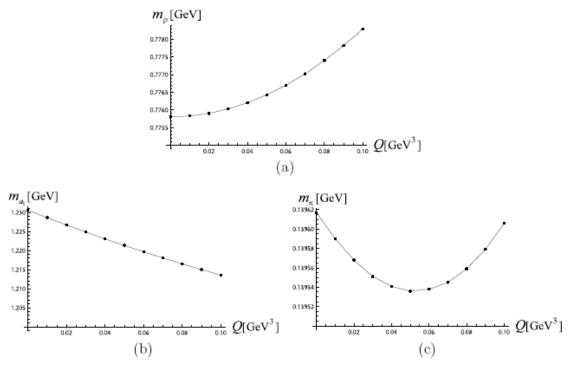


Figure 3: Meson masses with $m_q = 0.002383 \text{GeV}$. (a) ρ -meson (b) a_1 -meson (c)pion

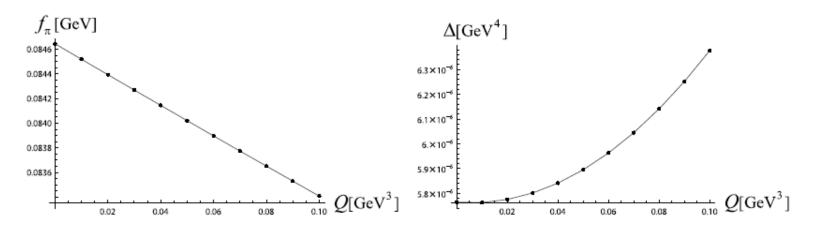


Figure 4: (a)pion decay constant (b)deviation from GOR relation. $m_q = 0.002383 \text{GeV}$.

2. AdS/CMT

Holographic superconductivity

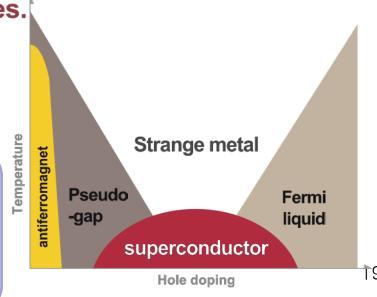
Temperature	$T < T_c \ (\psi \neq 0)$	$T > T_c (\psi = 0)$
d dim. CMT	SC phase	Normal Phase
d+1 dim. 중력	AdS Black Hole with hair	AdS Black Hole no hair

Evaluate the correlation functions, etc. to get the various physical quantities.

2point correlation function:
 Heat capacity, Conductivity,
 Magnetic susceptibility, Compressibility

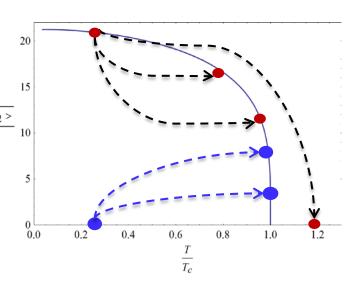
Goal :

Holographic Explanation for phenomena in the strongly correlated condensed matter systems, such as superconductivity, non Fermi liquid, Strange Metal, etc.



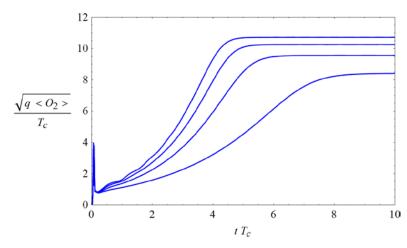
3. Holographic Approach to the nonequilibrium physics

Two scenarios of Far-from-equilibrium dynamics



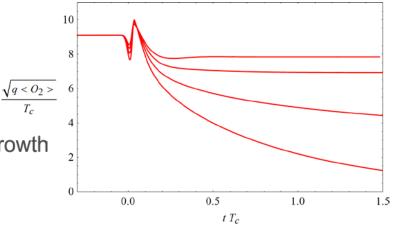
Blue routes: Condensation Process

 Non-equilibrium evolution of an unstable configuration



Red routes: Quantum Quenching

 Dynamical response to a sudden injection of energy

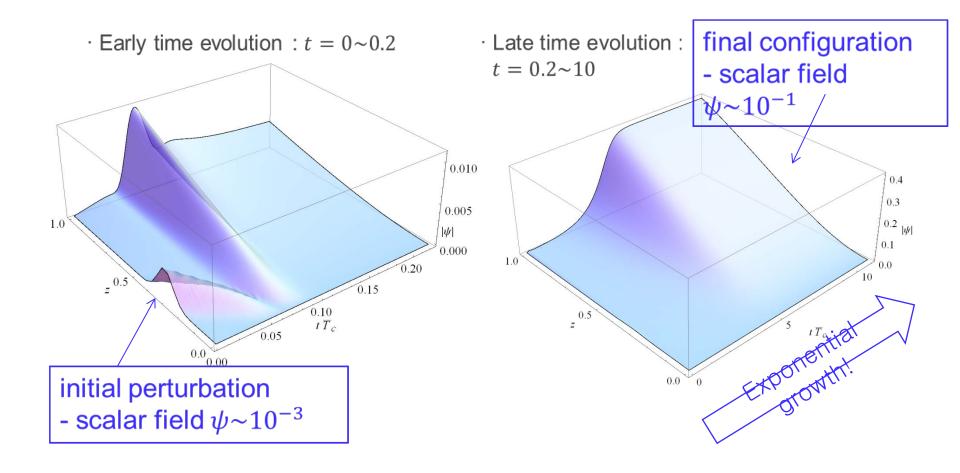


- · Condensate undergoes an exponential growth
- Phase transition in "real" time!

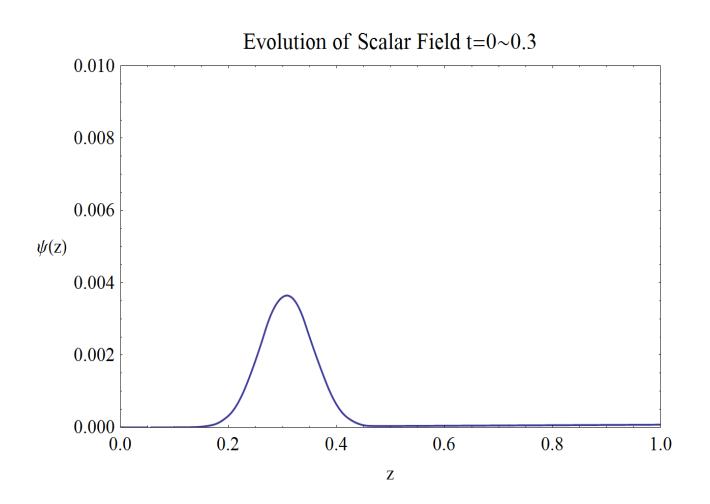
Condensation Process on Anisotropic Background

- evolution of scalar field

X. Bai, B-HL, M.Park, and K. Sunly arXiv:1405.1806



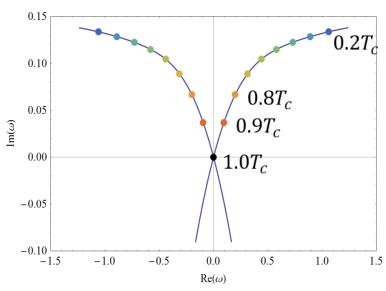
Temperature	$T < T_c \ (\psi \neq 0)$	$T > T_c (\psi = 0)$
d dim. CMT	SC phase	Normal Phase
d+1 dim. Gravity	Black Hole with hair	Black Hole no hair



Quasinormal modes (QNMs) - linearized fluctuation

- Matching between QNMs (dashed) and non-equilibrium evolution (solid)
- $\frac{\sqrt{|q < O_2 > |}}{T_c} = \begin{cases}
 0.1T_c \\
 4 \\
 2 \\
 0 \\
 0
 \end{cases}$ $\frac{\sqrt{|q < O_2 > |}}{2} = \begin{cases}
 0.8T_c \\
 4 \\
 2 \\
 0
 \end{cases}$ $t T_c$
 - · Initial temperature : $0.1T_c \sim 0.8T_c$

Leading three orders of QNMs $T = 0.1T_c \sim 1.2T_c$



- · QNMs move upward as T is lowered.
- · Points indicate critical temperature T_c .

IV. Summary

- Holographic Principles (through the D-brane configuration) (d+1 dim.) (classical) Sugra ↔ (d dim.) (quantum) YM theories
- SUGRA w/ BH ↔ Finite Temperature
- Constructing the dual geometry: Top-down & Bottom-up
- Holographic QCD
 - w/o chemical potential -

phase : confined phase

Geometry: thermal AdS

confined

Quark-Gluon

deconfined phase transition

deconfined

Hadron

AdS BH \leftrightarrow

Hawking-Page transition

 in dense matter - (U(1) chemical potential → baryon density) deconfined phase by RNAdS BH ↔ hadronic phase by tcAdS Hawking-Page phase transition

IV. Summary - continued

- AdS/CMT
- Holographic principle can also be applied to the nonequilibrium physics
- Holographic Principle may provide a new methodology for the strongly interacting phenomena!
- String Theory may provide the new paradigm for the theoretical physics in 21st

 Century

hank You