Design of Pulsar Board

Mircea Bogdan (for Pulsar group)
Level 2 Pulsar Mini-Review
Wednesday, July 24, 2002
Level 2 Pulsar – Hardware Requirements

- Double width, 9U VME board inside L2 crate;
- All the data interfaces that L2 decision crate has;
- Data source for all trigger inputs;
- Can record, reformat and retransmit data from upstream.
- Can use S-LINK Mezzanine Cards for communication to remote PC.
Level 2 Pulsar – Data Flow Top

TS Out
68 pin conn.
LVDS

Level1 In
80 pin conn.
LVDS

Level1 In
80 pin conn.
LVDS

SVT/XTRP
IN
52 pin conn.
LVDS

SVT/XTRP
OUT
52 pin conn.
LVDS

DATA I/O 1
EP20K400BC652-1XV
+ 128Kx36 SRAM
+ VME Access

DATA I/O 2
EP20K400BC652-1XV
+ 128Kx36 SRAM
+ VME Access

CONTROL MERGER
EP20K400BC652-1XV
+ VME Access

VME
EPM7128S

DATA I/O 1
80 pin conn.
LVDS

DATA I/O 2
80 pin conn.
LVDS

TS In
68 pin conn.
LVDS

LEVEL 1 PULSAR – DATA FLOW TOP
Level 2 Pulsar - Design Issues

Parts:
Factors considered: Price, existence of Synopsys simulation models, functionality;
- FPGA for VME: EPM7128SOC160-7 - reuse from CDF Projects - $37.
 uses +3.3V for I/O, +5V tolerant, hand assigned pins,
 we used ~10% of the logic elements for both the Data I/O and the Control chips;
- FIFO 4Kx18 : CY7C4245-10ASC – reuse from SVT Projects - $8.40;
- SRAM 128Kx36: CY7C1350-100AC - $40.45.

POWER:
- limited by the number of power pins on backplane;
- uses +5V/ 13A (estimated);
- generates: +2.5V/3A Max with LM1085IT-Adj.;
- generates: +3.3V/15A Max with DATEL UNR-3.3/20 DC/DC;
 Over voltage Protection: 4-4.6Vcc.
 Big consumer: S-Link: Spec. Max. 6x4.5W/3.3V – Imax=8.18A.
- will decide after prototype testing if we need to install DC/DC
 converter on the Aux card.
Level 2 Pulsar - Design Issues

Configuration Options:
- each FPGA has its own JTAG Chain with 3xEPC2LC20 and 10pin connector inside board;
- one big chain with all 3xFPGAs and 9xEPC2s and 10 pin front panel connector.

Clock Distribution:
- CDF_CLK from P2 to each FPGA and each Mezzanine Card, used to latch L1A, L1 trigger data, etc.
- 40 MHz S-LINK clock to each FPGA and to P3(optional) buffered with Robo Clock (skew programmed with jumpers), used to send S-LINK data – Oscillator on board.
- 60 MHz algorithm clock to each FPGA used for algorithm, for SVT-FIFO read-out, for SRAM and mezzanine cards communications – Oscillator on board.
- 53 MHz RF machine clock (optional) can replace the 60MHz clock, has 8pin AMP receptacle inside board with automatic on-board back-up with ICS581G-02: Zero Delay Glitch-Free Clock Mux.
Level 2 Pulsar – Mezzanine Cards

- The board accepts 4 Mezzanine Cards, 2 for each Data I/O chip.
- Each Mezzanine Card connected with Data(45:0) Bus and Ctrl(32:0) Bus that go directly to the FPGA;
- Connections are bi-directional for flexibility;
- CARD_ID(3:0) for identity check at power-up; prevents signal contention by keeping the I/Os in High Z;
- Each MC is provided with +5V, +3.3V and +2.5V;
- Design compatible with the Common Mezzanine Card Family Standard (CMC);
- Two 64-pin surface-mount CMC connectors;

Mezzanine Cards:
- Hotlink I/O 4xCypressRx/Tx or 2xRx/Tx + lvds - prototype tested;
- Taxi I/O 4x Taxi chips – not done yet;
- ODIN S-LINK interface – commercially available
 32-bit data with/40MHzCLK/160MBytes/s max transfer rate;
Level 2 Pulsar – Mezzanine Cards

HotLinkRx

HotLinkTx
Level 2 Pulsar - Board Specifications
Level 2 Pulsar - Layout Top
Level 2 Pulsar - Layout Bottom
Level 2 Pulsar - Trace Analysis

We performed signal integrity test on some 80 nets on the board using the Interconnect Synthesis Tool by Mentor Graphics.

Most of the IBIS (I/O Buffer Information Specification) models are vendor supplied.

For the FPGAs we used QuartusII generated IBIS models.

E.g. if we have a low source impedance with an unterminated 1 ft long line, we will get ringing with a period equal with four times the line time delay (it is a quarter wave length stub). With approx 2ns/ft we get some 8ns ringing period.

With 33Ohm Series Termination on the Source.
Level 2 Pulsar - Functional Simulation

- Each FPGA was first simulated with QuartusII 1.1.
- Files imported in QuickSimII – Mentor Graphics
- Extensive use of Synopsys SmartModels.
- Connector-to-connector functional simulation of board.
- Multi-board simulation:
 - instantiate Pulsar along with MCs in a top level schematic with DA;
 - run QSII with all the boards working together:
 4xTx HotLink + 4xRx HotLink + Pulsar.
- Possible: create a “virtual prototype” incorporating all the trace delays (SDF) generated with the trace analysis tool (ICX) into QSII.
Level 2 Pulsar – Functional Simulation
Level 2 Pulsar – VME SRAM Access
multi-board simulation

Pulsar motherboard

SLINK Output to P3

Pulsar and his eight daughters

Rx mezzanine

Tx mezzanine

inputs forced from here
Level 2 Pulsar – Status – July 24, 2002

- All the changes from Trace Analysis (terminations) are implemented and the board is rerouted, should have Gerber Files ready by 08/02/02;
- Quotations received for PCB, should have 4 pc. PCB by 08/09/02;
- Parts ordered for 2.5 boards, all major parts are in, last parts due by 08/09/02;
- Assembly 2 PCBs by 9/01/02;
- …Prototype Testing…