
DARK MATTER

Physics 472 - Winter Quarter, 2010 - University of Chicago

PROBLEMS DUE TUESDAY, JANUARY 19 - ANSWERS

Problem 1: The original evidence for dark matter was published by Fritz Zwicky

in Helvetica Physica Acta 6, 110 (1933). An account of his method in English may

be found in Astrophysical Journal 86, 217 (1937). You are asked to update his

calculation of the mass of the Coma Cluster. An exercise guiding you through this

calculation may be found in

http://spiff.rit.edu/classes/phys440/lectures/gal clus/gal clus.html

It may be helpful to refer to an earlier exercise

http://spiff.rit.edu/classes/phys440/lectures/glob clus/glob clus.html

in which the mass of a globular cluster is calculated.

Answer: You are asked to download a table of radial velocities of galaxies:

http://cdsweb.u-strasbg.fr/viz-bin/VizieR?-source=J/A+AS/111/265

and will obtain a file looking like the one on the next page. The columns are as follows:

(1) Galaxy serial number in set; (2) a galaxy identification number (including four

of the brightest listed in the NGC catalog); (3) and (4) distance from the center of

the cluster in arcseconds, west and north respectively; (5) apparent magnitude; (6) ?

(irrelevant); (7) radial velocity in km/s; (8) and (9) ? (irrelevant). You are first asked

to eliminate the outliers, with radial velocities far away from the average; these are

probably not in the Cluster. The ones I dropped were 7, 12, 15, 16, 19, 26, 27, and

30, leaving a sample of 26.

Using the coordinates (3) and (4), one must calculate the distance to the center of

the cluster using the Pythagorean Theorem: d = (W 2 + N2)1/2. The mean distance

of the 26 galaxies is found to be d̄ = 2486.9 arcsec or 0.6908◦ = 1.206× 10−2 radians.

If the Coma Cluster is 100 Mpc away (the number quoted by Michael Richmond),

this corresponds to a mean distance of 1.206 Mpc from the center of the cluster.

The dispersion σr of the radial velocities vr is an indication of thermal behavior.

Using the table of the 26 radial velocities (measured spectroscopically using Doppler

shifts), one calculates a mean value v̄r = 6971.8 km/s and a squared dispersion

σ2

r = v2
r − v̄2

r = 1.138 × 1016 m2 s−2. (A program which calculates these averages

and the data it uses may be found on p. 3.) One should multiply σ2

r by 3 to get the

total squared dispersion: σ2 = 3σ2

r = 3.413 × 1016 m2 s−2. (For comparison, Zwicky

had 5 × 1015 m2 s−2, using an estimate of 13.7 Mpc for the distance to the Coma

Cluster. As mentioned in class, distance scales were seriously underestimated until

the mid-1950s.)
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# data from Velocities in Coma cluster (Biviano+ 1995)

# http://cdsweb.u-strasbg.fr/viz-bin/VizieR?-source=J/A+AS/111/265

# RV

# W N km/sec

1 4469 1310 -1414 17.69 1.88 7452 22 2

2 4479 1322 -1982 17.51 1.83 5749 16 2

3 4522 1380 -1728 15.83 1.84 7606 12 2

4 4535 1393 -1857 17.90 1.95 7653 13 2

5 4579 1451 -1396 16.72 4915 53 2

6 4578 1451 -2113 18.04 1.80 5186 29 2

7 4592 1470 -1272 16.38 2.09 20220 4

8 4597 1478 -1723 16.37 1.91 4915 25 2

9 4630 1525 -1721 18.97 1.92 7335 17 2

10 4692 1594 -1944 17.37 1.74 8318 17 2

11 4714 1624 -1410 17.54 1.75 7226 18 2

12 4749 1665 -1540 19.17 1.72 49310 71 1 3

13 4792 NGC4842B 1721 -1743 16.30 1.91 7173 32 1 1

14 4794 NGC4842A 1724 -1712 15.26 2.02 7304 28 1 1

15 1740 -1720 -154 40 1 1

16 4825 1758 -1700 19.34 1.63 19865 15 1 2 E

17 4829 NGC4840 1762 -1291 14.86 1.98 6055 20 2

18 4852 1791 -1532 18.36 1.97 7694 45 1 1

19 4858 1797 -1799 18.78 2.10 38272 60 1 1

20 4907 1855 -1522 15.93 2.20 5504 36 1 1

21 4918 1867 -2030 16.03 4811 55 2

22 4928 NGC4839 1877 -1694 13.51 7442 100 3

23 4937 1887 -1506 18.35 1.82 5709 119 1 3

24 4943 1896 -1712 15.88 1.83 8203 27 1 1

25 4956 1913 -1778 18.52 1.73 6819 48 1 1

26 * 5323 1950 -1810 19.72 2.19 -101 37 1 1

27 * 5348 1980 -1795 15.41 2.19 -354 139 1 2

28 5038 2060 -2028 16.14 1.82 6205 15 2

29 5051 2076 -1806 15.46 2.07 7323 35 1 1

30 * 5439 2085 -1520 18.75 1.68 -202 40 1 1

31 5102 2141 -1591 17.50 1.92 8122 93 1 2

32 5136 2182 -2146 16.62 2.00 7012 10 2

33 5284 2434 -1509 17.98 1.75 7545 37 2

34 5296 2454 -1872 18.90 1.83 7310 21 2
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program rvdist

implicit real*8(a-h,o-z)

open(unit=9,file=’rvdist.dat’,status=’unknown’)

open(unit=10,file=’rvout.dat’,status=’unknown’)

v = 0.

vs = 0.

d = 0.

do i=1,26

read (9,*) dist, rv

d = d + dist

v = v + rv

vs = vs + rv*rv

end do

d = d/26.

v = v/26.

vs = vs/26.

sig = sqrt(vs - v*v)

write (6,703) d, v, sig

write (10,703) d, v, sig

703 format(’Avg. dist. ’,F8.2,’ arcsec; avg. v ’,F8.2,’ km/s;

+ sigma = ’,F8.2,’ km/s’)

close(unit=9)

close(unit=10)

stop

end

File rvdist.dat (needs to be in two columns to run):

d v d v d v

1928. 7452. 2151. 7226. 2555. 8203.

2382. 5749. 2449. 7173. 2612. 6819.

2211. 7606. 2430. 7304. 2891. 6205.

2321. 7653. 2184. 6055. 2752. 7323.

2014. 4915. 2357. 7694. 2667. 8122.

2563. 5186. 2399. 5504. 3060. 7012.

2270. 4915. 2758. 4811. 2864. 7545.

2299. 7335. 2528. 7442. 3087. 7310

2514. 8318. 2414. 5709.

File rvout.dat:

Avg. dist. 2486.92 arcsec; avg. v 6791.77 km/s; sigma = 1066.60 km/s
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We may now use the virial theorem, which says that twice the expectation value of the

(thermal) kinetic energy of a test particle is the average of its potential energy. For

a particle a distance r from a mass M (which may be distributed in any spherically

symmetric manner within the radius r) we then have σ2 = GM/r. One evaluates M

most easily by comparison with the orbital velocity of the Earth, v⊕ = 29.79 km/s, a

distance of 1 AU (Astronomical unit = 1.496× 108 km) from the Sun with mass M⊙:

σ2

v2
⊕

=
M

M⊙

1 AU

1.206 Mpc
= 3.847 × 103 . (1)

We also use 1.206 Mpc = (1.206) · 2.063 × 1011 = 2.488 × 1011 so that

M

M⊙

= (3.847 × 103)(2.488 × 1011) = 9.57 × 1014 . (2)

2. The Friedman equation for the Hubble constant H in terms of the energy density

(assuming a flat Universe, with zero curvature) may be trivially integrated to give

the time-dependence of the scale factor a(t) if the scale-dependence of the energy

density is known. For example, the matter energy density scales as the inverse cube

of a(t), while radiation energy density scales as the inverse fourth power. Some of

these integrals were done in class.

(a) Use the second Friedmann equation [given in class, or see, e.g., Carroll, Eq.

(8.68)], which involves both the energy density and the pressure, to relate the ratio

w of pressure and energy density to the scale-dependence parameter of the energy

density. (A similar relation may be obtained directly using the conservation of the

energy-momentum tensor.)

(b) Suppose you have a Universe consisting of a fraction f of dark energy and 1 − f

of matter, with total energy density equal to the critical density. Integrate the (first)

Friedmann equation to relate the scale factor a(t) to the time before the present (in

units of the inverse Hubble time). Either numerical or analytic integration will be

acceptable. Compare your results for f = 0, 0.72, and 1.

Answer: (a) the Friedmann equations (for a flat Universe) are

(

ȧ

a

)2

=
8πG

3
ρ ,

ä

a
= −4πG

3
(ρ + 3p) = −4πG

3
ρ(1 + 3w) (3)

Let ρ = ρ0a−α. The first Friedmann equation is

(

ȧ

a

)2

=
8πG

3
ρ0a

−α = H2

0
Ω0a

−α , (4)

where H2

0
= 8πGρcrit/3 and Ω0 = ρ0/ρcrit. This may be solved to give

a =
(

α

2
H0

√

Ω0t
)α/2

(α 6= 0) ; a = exp(H0

√

Ω0t) (α = 0) . (5)
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Then (for α 6= 0)

ä

a
=

2

α

(

2

α
− 1

)

1

t2
= −1

2
H0

√

Ω0(1 + 3w) . (6)

Demanding consistency with (ȧ/a)2 = (2/α)2t−2, we find

1 + 3w

2
=
(

1 − 2

α

)

/
2

α
=

α

2
− 1 ⇒ α = 3(1 + w) . (7)

For α = 0 consistency between the two Friedmann equations leads more directly to

w = −1.

2. For a matter-dominated Universe with Ω0

m = 1, so that ρ = ρcrit/a
3, the first Fried-

mann equation may be expressed in terms of the lookback time t̃ with the condition

a(0) = 1 to give a =
(

1 − 3

2
H0t̃

)2/3

. For a Universe where ρDE = ρcrit, the solution is

a = exp(−H0t̃). For a Universe with a fraction f = Ωm
0

of matter and 1 − f = ΩDE

of dark energy, the first Friedmann equation becomes

da

dt̃
= −H0

(

f

a
+ (1 − f)a2

)1/2

. (8)

The solution of this is

H0t̃ =
∫

1

a

√
a′da′

√

f + (1 − f)a′3
, (9)

which may be expressed as an elementary integral with the substitution α ≡ a′3/2 so

that

3

2
H0t̃ =

∫

1

a3/2

dα

f + (1 − f)α2

=
1√

1 − f

[

sinh−1

√

1 − f

f
− sinh−1

(
√

1 − f

f
a3/2

)]

. (10)

An equivalent function for sinh−1 is sinh−1 x = ln(x +
√

x2 + 1) . The limits of Eq.

(10) for f → 0, 1 are:

f → 0 : a(t) → exp(−H0t̃) : f → 1 : a(t) →
(

1 − 2

3
H0t̃

)2/3

. (11)

The three cases of f = 0 (pure dark energy, upper curve), f = 0.28 (mixture, middle

curve), and f = 1 (pure matter, lower curve) are plotted on the next page. The age

of the Universe is (2/3)H−1

0 for a matter-dominated Universe, just about H−1

0 for

f = 0.28, and infinite for a Universe dominated by dark energy.
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