Search for Non-Standard Model Behavior, including CP Violation, in Higgs production and decay to ZZ*

Jordan Webster; Advisor: Jim Pilcher

2015.05.27

Outline

- LHC and ATLAS
- The Standard Model
- Higgs spin & CP
- * H→ZZ*→4ℓ analysis
- Results

Special thanks to...

- Jim, Jeff Dandoy, and Eric Feng, who have all worked closely with me on my thesis analysis
- Mel for advising me on hardware projects
- <u>Woowon</u> and <u>Marcela</u> for being active committee members

Time working on Ph.D. ~6 years

Large Hadron Collider

ATLAS: A Toriodal LHC ApparatuS

- Multi-layer detector with trackers, calorimeters & muon chambers
- For reconstructing electrons, muons, photons, and jets from quark hadronization

The Standard Model (SM) and the Higgs

- Simple & accurate description of elementary particles and their interactions
- * Consistent theory of strong, weak & electromagnetic forces
- ★ Gauge theory: SU(3)⊗SU(2)⊗U(1)
 - Implies massless matter particles and gauge bosons

$$\begin{array}{c} \underline{Matter \ particles:}\\ \begin{pmatrix} v_{e} \\ e \end{pmatrix} \begin{pmatrix} v_{\mu} \\ \mu \end{pmatrix} \begin{pmatrix} v_{\tau} \\ \tau \end{pmatrix} \begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix} \\ \underbrace{SU(3) \times SU(2) \times U(1)}_{SU(3) \times SU(2) \times U(1)} \\ g & W & Z & \gamma \end{array}$$

 "Spontaneous symmetry breaking" allows for massive fermions & weak bosons, and predicts additional Higgs boson

The Higgs Discovery

- All particles in the SM have now been observed, but questions remain:
 - Dark matter, Matter-antimatter asymmetry, Neutrino mass / oscillations, hierarchy problem
- Motivation to make precise measurements of the Higgs to expose any signs of possible new physics beyond the SM

Higgs boson spin/CP

- SM Higgs is CP-even scalar, 0+
- Final state observables can be used to test this hypothesis against other discrete eigenstates, e.g. CP-odd (0⁻), CP-even with BSM couplings to higher dimensional operators (0⁺_h), graviton-like 2⁺
- * ATLAS combination of $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ^* \rightarrow 4\ell$, $H \rightarrow WW^* \rightarrow ev\mu v$

Higgs boson spin/CP

- SM Higgs is CP-even scalar, 0+
- Final state observables can be used to test this hypothesis against other discrete eigenstates, e.g. CP-odd (0⁻), CP-even with BSM couplings to higher dimensional operators (0⁺_h), graviton-like 2⁺
- * ATLAS combination of $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ^* \rightarrow 4\ell$, $H \rightarrow WW^* \rightarrow ev\mu v$

Tested Hypothesis	Exclusion confidence level, tested against O ⁺
0-	> 99.97%
0*h	99.95%
2⁺, кq/кg=0	> 99.99%
2⁺, кq/кg=1	99.99%
2⁺, кq/кg=2	> 99.99%

* For the 2⁺ model there are no constraints on the quark and gluon couplings so exclusions are calculated for $\kappa_q/\kappa_g = 0$, 1, 2

CP Mixing

- * Also possible to have a mixture of CP eigenstates
 - * CP violation in the Higgs sector, exists in Two-Higgs Doublet Models
- Characterized by couplings in a tree level scattering amplitude for a generic scalar X:

$$A(X \rightarrow VV) = v^{-1} \left(g_1 m_V^2 \epsilon_1^* \epsilon_2^* - g_2 f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + g_4 f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \right)$$
[arXiv:1208.4018]
$$\underline{SM} \text{ Higgs} \quad BSM \underline{CP-even contribution} \quad BSM \underline{CP-odd contribution}$$

- g_{1,2,4} are complex numbers that specify the CP mixture
 - * $0^+ \rightarrow g_1 = 1, g_{2,4} \approx 0$
 - * 0⁻ → g₄=1, g_{1,2}≈0
- Can measure directly using final state observables in Higgs decays

$$\overline{\sigma_4}; \ \phi_{g_i} = \arg\left(\frac{g_i}{g_1}\right)$$

CP Mixing

 $g_{1,2,4}$ are easily mapped to couplings + mixing angle α in an effective Lagrangian, or admixtures f_{g2} and f_{g4}

Effective Lagrangian conversion (notation from my abstract/thesis):

$H \rightarrow ZZ^* \rightarrow 4\ell$ final state

- Considered "golden channel" for the Higgs because of extremely low background and because leptons can be precisely measured
- ✤ Con: Low total yield

Diboson production:

- ***** BR(H→ZZ*) ≈ 2.8%
 - * ~10x lower than H→WW*
 - * ~10x higher than $H \rightarrow \gamma \gamma$

$H \rightarrow ZZ^* \rightarrow 4\ell$ final state

- Considered "golden channel" for the Higgs because of extremely low background and because leptons can be precisely measured
- <u>Con</u>: Low total yield

Diboson production:

- ***** BR(H→ZZ*) ≈ 2.8%
 - * ~10x lower than H→WW*
 - * ~10x higher than $H \rightarrow \gamma \gamma$

Diboson decay:

- ***** BR(H→ZZ^{*}→4ℓ) ≈ **1.3×10**⁻⁴
 - * ~10x lower than $H \rightarrow \gamma \gamma$ and $H \rightarrow WW^* \rightarrow ev\mu v$
- Low reconstruction efficiency
 ~ (lepton reconstruction eff)⁴

$H \rightarrow ZZ^* \rightarrow 4\ell$ observables

Lots of useful observables with 4 leptons in final state...

Signal distributions at parton-level

The scattering amplitude can be used to calculate an analytical matrixelement *M*(cosθ₁, cosθ₂, Φ, m₁₂, m₃₄ | g_{1,2,4}) that tells us how to expect the data to be distributed for different values of g_{1,2,4}

J. Webster

Simulated data for the measurement

ZZ Background: MC

Reducible backgrounds: Z+jets, ttbar, WZ Mix of MC and data-driven methods

<u>Signal</u>:

- Production in PowHeg @ NLO; decay with JHU generator at LO
- * We need simulated signal for many different CP-mixtures
- Save computer time by using the matrix-element to reweight a single MC sample to any target CP-mixture
- * Each event is weighted separately based on the truth-level observables $\vec{x} = (\cos\theta_1, \cos\theta_2, \Phi, m_1, m_2)$

$$w_i = \frac{|\mathcal{M}(\vec{x}_i | \text{target } g_{1,2,4})|^2}{|\mathcal{M}(\vec{x}_i | \text{source } g_{1,2,4})|^2}$$

Simulated data for the measurement

ZZ Background: MC

(Approximate) Event selection

- Single + di-lepton triggers
- * Electrons:
 - ★ E_T > 7 GeV
 - **∗** |η| < 2.47</p>
- Muons:
 - ∗ p_T > 6 GeV
 - **∗** |η| < 2.7
- * Require 4 separated leptons with $\Delta R = \sqrt{[\Delta \phi^2 + \Delta \eta^2]} > 0.1$, 2 OSSF pair
- ✤ 50 < m₁₂ < 106 GeV</p>
- ✤ 12 < m₃₄ < 65 GeV</p>
- 115 < m_{4l} < 130 GeV
 (retains 95% of signal)

GeV 35 ATLAS Data Signal (m_{μ} = 124.5 GeV μ = 1.66) / 2.5 $H \rightarrow ZZ^* \rightarrow 4l$ 30 Background ZZ* $\sqrt{s} = 7 \text{ TeV}$: $\int Ldt = 4.5 \text{ fb}^{-1}$ Events / Background Z+jets, tt $\sqrt{s} = 8 \text{ TeV}$: Ldt = 20.3 fb⁻¹ 25 Systematic uncertainty 20 15 10 5 100 110 120 130 140 150 160 170 80 90 m₄₁ [GeV]

Events divided into 4 final states: 4µ, 2e2µ, 2µ2e, 4e

Event Yields

Dataset: 20.3 fb⁻¹ @ 8 TeV, 4.7 fb⁻¹ @ 7 TeV

Final State	Signal	ZZ^*	Reducible Bkg	Total Expected	Observed
	•				
-4μ	5.81	3.36	0.97	10.14	13
$2e2\mu$	3.72	2.33	0.84	6.89	9
$2\mu 2e$	3.00	1.59	0.52	5.11	8
4e	2.91	1.44	0.52	4.87	7
Combined	15.44	8.72	2.85	27.01	37
			$\sqrt{s} = 7 \mathrm{TeV}$		
-4μ	1.02	0.65	0.14	1.81	3
$2e2\mu$	0.64	0.45	0.13	1.22	2
$2\mu 2e$	0.47	0.29	0.53	1.29	1
4e	0.45	0.26	0.59	1.30	2
Combined	2.58	1.65	1.39	5.62	8

Events passing selection in data = 45 \square Observed S/B = 2.1 (Expected = 1.2)

Measurement strategies

- Two approaches done in parallel to cross-check one another, both using of the analytical matrix-element:
 - <u>9D Matrix-Element Method (9DMEM)</u>: Fit using 9-dimensional shape of all the useful observables
 - Matrix-Element Observable Method (ME-Obs): Collapse the many observables into 3 multivariate discriminants and fit using 3D shape of discriminants
 - Boosted Decision Tree (BDT) for background separation
 - Matrix-element ratios for sensitivity to g_{1,2,4}

9DMEM signal model

- Binned 9D histogram would require unrealistically large number of simulated events!
- Solution: slice 9D shape into
 4 pieces, neglecting small
 correlations
- * m₄, (p_{T,4}, η₄), cosθ* &
 (cosθ₁, cosθ₂, Φ, m₁₂, m₃₄)

- For the 5D piece, we start with the parton-level shape from the matrixelement and apply corrections for detector efficiency, acceptance & resolution
 - Corrections are 2D and 3D MC histograms divided by matrix-element

9DMEM background model

- Similar approach for backgrounds, but we have fewer MC events and no validated ME-based parton-level prediction, so there are more neglected correlations:
 - m₄, (p_{T,4}, η₄), cosθ*, (cosθ₁, cosθ₂), Φ, (m₁₂, m₃₄)
 - m₄₁ piece is smoothed using Kernel Density Estimation
- Note: Neglecting more correlations in background than signal could lead to biased measurement. This gets incorporated as a systematic uncertainty, which ends up being negligible.

Reconstructed shapes & data

Projected onto 6 of the 9 observables

0⁺ Higgs with SM cross-section ZZ background Reducible background

12

10

8

0

12

10

8

0_1

Expected Events / Bin

Expected Events / Bin

Fit strategy

- Measure of g₂/g₁ & g₄/g₁ separately assuming real values & focusing on interval [-10, 10] where we currently have sensitivity
- Profile-likelihood fit
- Signal strength μ=σ/σ_{SM} and Higgs mass m_H are free parameters determined by fit
 - Measured values consistent with SM
- Dominant systematics:
 - Theoretical ZZ* background rates from parton distribution function and QCD Scale
 - Reducible background uncertainties from transfer factor method
 - Luminosity uncertainty
- Dominant uncertainties combined have < O(0.5%) impact on expected g₄/g₁ 95% CL limits

Example fit

- Validate model by fitting to MC and checking that the measured results are consistent with the injected values
- <u>Example</u>: Fitting to O(100K) SM events, reweighted to 10 x the current luminosity:

Results

Deremeter	Bes	st-fit	Excluded at 95% CL			
Falameter	Expected [red]	Observed	Expected [red]	Observed		
g4/g1	0.00 ^{+1.49} - 1.49	-0.91 ^{+0.85} - 0.96	<-2.99 and >2.99	<-3.24 and >0.91		
g ₂ /g ₁	0.00 +0.82 - 0.40	-0.36+0.42	<-0.65 and >3.99	<-0.82 and >0.87		

- ***** Best-fit signal strength $\hat{\mu} = \hat{\sigma}/\sigma_{SM} \approx 1.7$ assuming 0+
- Results are consistent with SM @ 0

30

25

20

15

10

-8

-2 In እ

8

,/κ_{SM}

Results

Deremeter	Bes	st-fit	Excluded at 95% CL			
Parameter	Expected [red]	Observed	Expected [red]	Observed		
g4/g1	0.00 +1.49 - 1.49	-0.91 ^{+0.85} - 0.96	<-2.99 and >2.99	<-3.24 and >0.91		
g ₂ /g ₁	0.00 +0.82 - 0.40	-0.36+0.42	<-0.65 and >3.99	<-0.82 and >0.87		

- * 2HDM/Technicolor Models predict $g_4/g_1 \approx O(0.1)$ [arXiv:1307.1347]
- SM electroweak corrections predict $g_2/g_1 \approx O(0.01)$

30

25

20

15

10

-8

8

,/κ_{SM}

Comparison with ME-Obs Method

AT

-8

Combination with WW*

- Also measured in $H \rightarrow WW^* \rightarrow ev\mu v$ channel with slightly less sensitivity *
 - Fit with two multi-variate discriminants: * One for background rejection and one for separating CP-hypotheses
- Combination with ZZ* results from ME-Obs method because it is computationally faster *

	Þ	aramptor										
лХ	30		Expected	d [red]	Obser	ved 30	Expected [r	ed]	Observed-		30 _[-	
-2	05	∑ <i>ATLAS</i> Preli - 94/91	minary 0.00	$H \rightarrow ZZ^*$ √s = 7 TeV, 4.4	→ 4 <i>l</i> _{5 fb¹} -0.68	 	∑ ATLAS Prelimina _<-2.33 and >	¹ 2.30 ^H √≲	$\rightarrow ZZ^* \rightarrow 4l$ = 74ev, $43th$ and >0 .	83 4	25	ATLAS Pr
	-25	Observed	0.00	$\sqrt{s} = 8 \text{ TeV}, 20$ H $\rightarrow WW$	$a_{\star} \rightarrow e_{\nu} \mu_{\nu}$		Observed <-0.55,and >	4.80 K	$= 8 \text{ TeV, 20.3 fb}^{-1}$ (-0,73) and >0	63	23	Obser
	20	- signal str - Expected	ength fit to data I: SM	√s = 8 TeV 20	ice consi	steneg	- signal strength Expected: SM	fit to data $\sqrt{s} =$	= 8 TeV, 20.3 fb ¹	-	20	signal - Expec
									-		E	

Two-dimensional 9DMEM Fit

- Also possible to do simultaneous measurement of both parameters
- * 9DMEM results within ~1 σ of SM prediction (solid black contour):

Looking Ahead

We have nice fundamental limits, characterizing * $\sqrt{s} = 7 \text{ TeV}, 4.5 \text{ fb}^{-1}$ the WW* and ZZ*2finalostates $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{1}$ Expected: signal strength fit to data Expected: SM Part of the motivation is to lay the groundwork for * future measurements during Run II at the LHC Extrapolated expected 95% CL **Jimits** from * 2 $\widetilde{\kappa}_{HVV}/\kappa_{SM}$ **300 fb⁻¹**: $|g_2/g_1| < O(0.5), |g_4/g_1| < O(1.6)$ *

*** 3000 fb⁻¹**: $|g_2/g_1| < O(0.1), |g_4/g_1| < O(0.4)$

Barely probe current models with ~3000 fb⁻¹

Conclusion

First CP-mixing measurement from ATLAS:

Channala	95% CL intervals				
Channels	BSM CP-odd contribution	BSM CP-even contribution			
ZZ*-only (9DMEM)	-3.24 < g ₄ /g ₁ < 0.91	-0.82 < g ₂ /g ₁ < 0.87			
$ZZ^* + WW^*$	-2.18 < g ₄ /g ₁ < 0.83	-0.73 < g ₂ /g ₁ < 0.63			

- Fundamentally characterization of the HVV vertex
- Groundwork for future measurement with many discriminant observables
 - Multi-dimensional fits will become more critical with more data to justify the simultaneous measurement of more parameters
- Small improvement estimated in Run II, but there will be more room for creativity

Backup

32

Higgs Properties

Just some of the highlights:

Property	Channels	Result			
Mass [1503.07589]	ATLAS+CMS: γγ, ZZ	125.09 ± 0.21(stat) ± 0.11(syst) GeV			
xsec (8 TeV) [<u>1504.05833]</u>	ATLAS: γγ, ZZ	$\sigma_{pp \to H} = 33.0 \pm 5.3(stat) \pm 1.6(syst) pb$ (expected ~24 pb)			
Couplings	ATLAS: γγ, ZZ, WW, ττ, Vbb, μμ, Ζγ, ttH	$\mu_{ggF} = 1.23_{-0.20}^{+0.23}$ $\mu_{VH} = 0.80 \pm 0.36$ $\mu_{tH} = 1.81 \pm 0.80$ $m_{H} = 125.36 \text{ GeV}$ $-0.5 0 0.5 1 1.5 2 2.5 3$ Parameter value			
Decay width	ATLAS: ZZ, WW	Гн/Гн,ѕм < 5.5 × @ 95% CL [<u>1503.01060]</u>			
via off-shell couplings	CMS: ZZ	Гн/Гн, sm < 5.4 × @ 95% CL [<u>1405.3455]</u>			
Spin/CP		details in this talk			

ATLAS Higgs rates in different final states

 $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$

Effective Lagrangian Approach

Mixture characterized by non-SM couplings in Eff. Lagrangian:

* Coupling ratios ($\tilde{\kappa}_{AVV}/\kappa_{SM}$)tan α and $\tilde{\kappa}_{HVV}/\kappa_{SM}$ measured directly, where $\tilde{\kappa}_x$ is the non-SM coupling scaled by the vacuum expectation value over 4×energy scale for new physics (Λ) to be consistent with g₄/g₁ and g₂/g₁

0+ → (
$$\tilde{\kappa}_{AVV}/\kappa_{SM}$$
)tan α =0, $\tilde{\kappa}_{HVV}/\kappa_{SM}$ =0
0- → ($\tilde{\kappa}_{AVV}/\kappa_{SM}$)tan α =1, $\tilde{\kappa}_{HVV}/\kappa_{SM}$ =0

Matrix-element calculation

Scattering amplitude can be separated into 3 helicity states with amplitudes dependent on $g_{1,2,4}$

ZZ Background correlations

Signal Correlations

Impact on the expected likelihood curve (fitting with signal-only model) from removing more correlations in the 5D shape sensitive to $g_{1,2,4}$

Signal Correlations

Example of a small functional dependence between Φ and $\cos\theta_1$ that appears for CP-states "nearby" O- (also occurs for $\cos\theta_2$ vs. Φ)

Impact from background-rejection observables

m₄₁ has largest impact by far out of background discriminants

Test of asymptotic approximation

- Asymptotic approximation allows us to infer uncertainty intervals from a single -2InA scan, which saves lots of CPU time
- This is only valid if -2InA values at the injection point are distributed like a ChiSquare function (typically the case when Nevents is large)

Compatibility of the two methods

- Same set of checks done for alternative ME-Obs fitting method as well
- How do the expected results compare for the 2 methods?
 - Results compared for 300 SM toys generated from MC:

Compatibility of the two methods

Distributions from Toys: g₂/g₁

J. Webster

Post-analysis

Dashed red: Median Green band: 68% interval Yellow band: 95% interval Distribution of toys used to produce expected uncertainty band for comparison with data

Comparison to CMS

- CMS spin/CP combination published in November, 2014 [arXiv:1411.3441]
- Some differences w.r.t. ATLAS
 - * Results reported in terms of admixtures $f_{a2}(=f_{g2})$ and $f_{a3}(=f_{g4})$
 - ★ More data: 7 TeV included for $H \rightarrow WW^* \rightarrow ev\mu v$
 - Multiple parameters allowed to float at the same time (analogous to a simultaneous fit for g₄/g₁ and g₂/g₁)
 - More inclusive selection: 50 events passing in ZZ* final state, 56 expected

Fast TracKer Trigger Upgrade

48

FTK Overview

- Track reconstruction in the trigger is challenging and slow
- FTK is a hardware solution designed to do full track reconstruction at the O(100 KHz) level 1 output rate
 - helix parameters and χ² values get passed to level 2, freeing up resources for more complicated trigger decisions
 - * b-jets, τ leptons, track-MET, etc.
- Parallel pattern matching for hits with Associative Memory (AM)

A potpourri of boards and technologies

Dual HOLA splits ROD data streams for DAQ and FTK

An input mezzanine clusters incoming hits, and the Data Formatter sorts hits into η - ϕ towers (64 FTK towers)

AUX calculates course resolution hits ("superstrips") and sends them to AM for pattern matching

AM sends matched patterns ("roads") to AUX and χ^2 values are calculated with full resolution hits from 8 layers

SSB performs extrapolation to 12 layers using candidate tracks passing first stage, calculates helix parameters

FLIC formats output for HLT

More detail on the AUX

- Full FTK system contains 128 AUX boards
- 2 "Input" FPGAs + 4 "Processor" FPGAs per board

Track Fitter

- χ² values calculated using linear approximation, multiplying hits by pre-stored constants
 - 5 Mb of constants stored on each FPGA
 - Mixture of fixed and floating point formats
- Calculation is done for all combinations of hits in each road (there are often multiple hits per layer)
- Hits are sometimes missing in layers due to detector inefficiency
 - * Solution: If one layer is missing, calculate a "guessed" hit value that minimizes the χ^2
- Design spec: average of 1 fit/ns per FPGA, 200 MHz clock speed
- Functional firmware in place: ~25,000 lines VHDL, ~10 W
 - Ongoing work to increase speed (will be taken over by Karol Krizka)

FTK Installation Schedule

	ІМ	DF	AUX	AMB	AM	SSB	FLIC	Milestones	Expected
1st	a few	a few	1	1	05	1	1	Included TDAQ	09/2015
2nd	128	32	16	1	06	8	2	Included TDAQ	11/2015
3rd	128	32	16	16	06	8	2	Full barrel (mu=40)	02/2016
4th	128	32	32	32	06	16	2	Full detector (mu=40)	08/2016
Final	128	32	128	128	06	32	2	TDR Specs	2018 / Lumi driven

- Dual-output HOLA cards installed in 2012-2013
- "Vertical slice" tests done with live data in 2013: just testing HOLAs and pattern matching in slice of detector
- Recent data tests during M7
- * <u>AUX status</u>: TDR done, PRR early 2015, testing prototypes at Chicago and CERN

Performance in Simulation

- Simple b-tagger built using FTK d₀ significance
- b-tag trigger efficiency calculated for three different rejections w.r.t.
 offline b-tag efficiency

Conclusion

- FTK will be a critical tool for doing physics at high pile-up
- Full detector implementation by 2017
- Start thinking about final states
 with lots of b's and τ's!

