

The last problem in HW#9 involves the solutions to the 3D Harmonic Oscillator.  Gasciorowicz asks us to calculate the rate for the “
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” transition, so the first problem is to figure out what he means.  Harmonic oscillator states in 1D are usually labeled by the quantum number “n”, with “n=0” being the ground state [since 
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].  But in this problem, 1s means the ground state and 2p means the 
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 component of the first excited state, named in analogy to the hydrogen atom wavefunctions where n=1 corresponds to the ground state.

In any case, this gives us a good opportunity to review what we learned in Ph234.  We discussed the 3D SHO there, and one of the homework problems (Shankar 12.6.11) in HW#9 was to derive the wavefunctions.  The student should review “The Isotropic Oscillator” in Shankar (pages 351-2) and the solution to 12.6.11, which I have added  to the “Examples” on the Ph235 website.  [Note that is Shankar’s notation, the ground state has n=0 so Shankar if Shankar has written this problem, he would have asked for the transition probability from the “1p” state to the “0s” state.  I will use Shankar’s notation below.]

But this problem gives us a good opportunity to review the solutions of spherically symmetric potentials that we derived in Ph234, so that is what I will try to do here.


For the general problem of a spherically symmetric potential 
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, it is clearly best to use spherical coordinates.  Since 
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=0 [because a rotation about z does not affect V(r)], we can always find (with separation of variables) eigenstates of the form 
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 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.1)

To find 
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, first write the Hamiltonian in spherical coordinates:
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 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.2)

By using separation of variables, or by comparing 
(1.2)

 to the equation for  GOTOBUTTON ZEqnNum998527  \* MERGEFORMAT  in spherical coordinates [Shankar 12.5.36, p. 335], this can be written as
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 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.3)

Now substitute 
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and use the energy eigenvalue equation to obtain the radial equation:
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 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.4)


So far, this development is the same any central potential.  To find the form of U, we need the asymptotic behavior of 
(1.4)

, and this depends on  GOTOBUTTON ZEqnNum339178  \* MERGEFORMAT .  In the case of a 3D harmonic oscillator potential,
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This term clearly dominates as  
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, and in that limit equation (1.4)

 reduces to
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which has the asymptotic solution 



[image: image17.wmf](

)

(

)

1/2

2

0

1

2

()expwhere 

ElEl

m

Ur

w

rurrr

æö

=-=

ç÷

èø

h
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where 
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 is a polynomial in 
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 of finite order.  Writiing 
(1.4)

 in terms of  GOTOBUTTON ZEqnNum339178  \* MERGEFORMAT  gives
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Substituting in 
(1.7)

 gives the equation for  GOTOBUTTON ZEqnNum944762  \* MERGEFORMAT :
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Now go back to 
(1.4)

 and look at the limit as  GOTOBUTTON ZEqnNum339178  \* MERGEFORMAT .  In this limit the equation becomes 
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which tell us that the lowest power of 
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 in 
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 must be a finite polynomial, this means
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Substituting this into 
(1.9)

 gives both the relation between N and  GOTOBUTTON ZEqnNum202371  \* MERGEFORMAT  and also the recursion relation for the 
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and
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Note that since 
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 by definition of N, the recursion relation implies that 
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 for all odd j’s.  Consequently N is even, 
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