Measurement of the top quark mass in the dilepton channel using \(m_{T2}\) at CDF

This redlined proof highlights changes made to the text of your article by the copyeditor; however, changes made to display equations, references, and figures and changes made to comply with standard PRD format are not highlighted. We urge you to carefully review your article along with the questions and comments that are part of the formatted proof, as many of these comments do point out changes that are not highlighted here.
AALTONEN (CDF Collaboration)
We present measurements of the top quark mass using m_{T2}, a variable related to the transverse mass in events with two missing particles. We use the template method...
applied to $t\bar{t}$ dilepton events produced in $p\bar{p}$ collisions at Fermilab’s Tevatron Collider and collected by the CDF detector. From a data sample corresponding to an integrated luminosity of 3.4 fb^{-1}, we select 236 $t\bar{t}$ candidate events. Using the m_{T2} distribution, we measure the top quark mass to be $M_{\text{top}} = 168.0^{+4.8}_{-4.6} \text{(stat)} \pm 2.9 \text{(syst)} \text{ GeV}/c^2$. By combining m_{T2} with the reconstructed top quark mass distributions based on a neutrino weighting method, we measure $M_{\text{top}} = 169.3 \pm 2.7 \text{(stat)} \pm 3.2 \text{(syst)} \text{ GeV}/c^2$. This is the first application of the m_{T2} variable in a mass measurement at a hadron collider.

I. INTRODUCTION

Models in numerous, well-motivated theoretical frameworks make predictions for new phenomena at hadron colliders such as the Tevatron and the Large Hadron Collider (LHC) [1,2]. Within each framework, one can construct a number of qualitatively different models consistent with data. Thus, when discoveries are made at a hadron collider, we face the inverse problem of how one maps back to the underlying theory responsible for the new phenomena [1,3]. A potentially powerful observable to discriminate among models and to extract the mass of new particles, when the new phenomenon produces a pair of new particles with large missing energy signatures, is the m_{T2} variable [4,5]. The m_{T2} variable is based on transverse mass in events with two missing particles.

The top quark is the heaviest known elementary particle with a mass approximately 40 times larger than the mass of its isospin partner, the bottom quark (b). The large top quark mass (M_{top}) produces significant contributions to electroweak radiative corrections. Therefore, top quark mass measurements are important tests of the standard model and provide constraints on the Higgs boson mass. In the dilepton channel, $t\bar{t}$ pair production is followed by the decay of each top quark to a W boson and a b quark where both W bosons then decay to charged leptons (e or μ) and neutrinos. Events in this channel thus contain two leptons, two b quark jets, and two undetected neutrinos. The measurement of M_{top} using complementary techniques tests and
improves our understanding of this important parameter in the standard model [6].

In this letter, we present the first measurement of the mass of the top quark using the m_{T2} distribution with $t\bar{t}$ events in the dilepton channel [7]. We use this channel because it has decay products similar to possible new phenomena where undetected particles are created. We compare this method with two others that were previously used: the reconstructed top quark mass using the neutrino weighting algorithm (m_{t}^{NWA}) [8,9] and the scalar sum of transverse energies of jets, leptons, and missing transverse energy (\mathbf{E}_{T}) [10] in the event (H_{T}) [11]. We also measure the top quark mass using pairs of observables $(m_{T2}, m_{t}^{\text{NWA}})$ and $(m_{t}^{\text{NWA}}, H_{T})$ simultaneously.

II. THE m_{T2} VARIABLE

Many models contain heavy, strongly-interacting particles with the same conserved charge or parity that result in weakly-interacting, stable particles in the final state. A hadron collider would pair-produce these colored particles, which then decay into standard model particles along with a pair of undetectable weakly interacting particles, so that the generic experimental signature is large missing transverse momentum accompanied by multiple energetic jets and leptons [10]. In this final state, we can define m_{T2} as

$$m_{T2}(m_{\text{invis}}) = \min_{\mathbf{p}_{\text{invis}}^{(1)}, \mathbf{p}_{\text{invis}}^{(2)}} \left[\max \left[m_{T}(m_{\text{invis}}; \mathbf{p}_{\text{invis}}^{(1)}), m_{T}(m_{\text{invis}}; \mathbf{p}_{\text{invis}}^{(2)}) \right] \right].$$ \hspace{1cm} (1)

where m_{T}, the transverse mass of each parent particle, is defined as

$$m_{T}(m_{\text{invis}}; \mathbf{p}_{\text{invis}}) = \sqrt{m_{\text{vis}}^{2} + m_{\text{invis}}^{2} + 2(E_{T}^{\text{vis}}E_{T}^{\text{invis}} - \mathbf{p}_{T}^{\text{vis}} \cdot \mathbf{p}_{T}^{\text{invis}})}.$$

\hspace{1cm} (2)

Here “invis” and “vis” represent the individual undetected (invisible) and detected (visible) particles, respectively. $\mathbf{p}_{T}^{(1)}$ and $\mathbf{p}_{T}^{(2)}$ are transverse momenta of two invisible particles, and m_{invis} is the mass of the invisible particle. The minimization is performed with the constraint $\mathbf{p}_{T}^{(1)} + \mathbf{p}_{T}^{(2)} = \mathbf{p}_{T}^{\text{missing}}$, where the magnitude of $\mathbf{p}_{T}^{\text{missing}}$ is constrained to the missing transverse momentum.

The quantity m_{T2} represents a lower bound on the mass of the parent particle. Using the m_{T2} distribution, we can extract the mass of this parent particle [12] in a similar way to the precise measurement of the W boson mass [13] where an event contains one charged lepton (e or μ) and a neutrino, with the latter not being detected.
III. EXPERIMENT AND DATA

We use a sample of $t\bar{t}$ candidates in the dilepton channel, corresponding to 3.4 fb$^{-1}$ of proton-antiproton collisions at $\sqrt{s} = 1.96$ TeV, collected using the CDF-II detector [14]. This is a general-purpose detector designed to study $p\bar{p}$ collisions at the Fermilab Tevatron. A charged-particle tracking system, consisting of a silicon microstrip tracker and a drift chamber, is immersed in a 1.4 T magnetic field. Electromagnetic and hadronic calorimeters surround the tracking system and measure particle energies. Drift chambers and scintillators, located outside the calorimeters, detect muon candidates.

We select events consistent with the $t\bar{t}$ dilepton decay topology. We require two oppositely charged lepton candidates with $p_T > 20$ GeV/c with one isolated [15] lepton candidate in the central region ($|\eta| < 1$) of the detector, and another isolated or non-isolated lepton candidate in the central region, or isolated electron candidate in the forward region ($1.0 < |\eta| < 2.0$). We also require E_T exceeding 25 GeV, and at least two jets with $E_T > 15$ GeV and $|\eta| < 2.5$ [10]. To further reject backgrounds, we request $H_T > 200$ GeV. We also require the variables of interest to be consistent with the top quark hypothesis by demanding 20 GeV/c$^2 < m_{T2} < 300$ GeV/c2 and 100 GeV/c$^2 < m_{NWA} < 350$ GeV/c2. The criteria select 236 $t\bar{t}$ candidate events.

The primary sources of background production are Drell-Yan, diboson, and QCD multijet events. We estimate the rate of the Drell-Yan events with a calculation based on simulated events using the ALPGEN [16] table. Expected and observed numbers of signal and background events assuming $t\bar{t}$ production cross section $\sigma_{t\bar{t}} = 6.7 \pm 0.8$ pb and $M_{top} = 175$ GeV/c2. Uncertainties quoted capture the uncertainties on the theoretical cross section, the statistics of data in the Z mass window, the jet energy scale, the luminosity, the fake rates, and the statistics of the MC samples.

<table>
<thead>
<tr>
<th></th>
<th>non-tagged Nontagged</th>
<th>$t\bar{t}$ Tagged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diboson</td>
<td>15.2 ± 2.3</td>
<td>0.6 ± 0.1</td>
</tr>
<tr>
<td>Drell-Yan</td>
<td>31.1 ± 3.5</td>
<td>1.7 ± 0.2</td>
</tr>
<tr>
<td>QCD multijets</td>
<td>31.2 ± 8.7</td>
<td>4.5 ± 1.3</td>
</tr>
<tr>
<td>Total background</td>
<td>77.5 ± 9.8</td>
<td>6.8 ± 1.3</td>
</tr>
<tr>
<td>$t\bar{t}$ with $\sigma_{t\bar{t}} = 6.7$ pb</td>
<td>68.7 ± 6.8</td>
<td>88.4 ± 8.2</td>
</tr>
<tr>
<td>Total (Predicted)</td>
<td>146.2 ± 11.9</td>
<td>95.2 ± 8.3</td>
</tr>
<tr>
<td>Observed (3.4 fb$^{-1}$)</td>
<td>149</td>
<td>87</td>
</tr>
</tbody>
</table>
v2.10 Monte Carlo (MC) generator and the rate of diboson events with a PYTHIA [17] v6.216 calculation. For
the Drell-Yan \(Z + \text{jets} \) process, we normalize the MC sample by matching the number of \(Z \) events predicted
and observed in the \(Z \) mass region between \(76 \text{ GeV/c}^2 \) and \(106 \text{ GeV/c}^2 \). We use data to estimate the
rate of background events from QCD multijet production where an event has one real lepton and one of the
jets misidentified as another lepton (fake). In measuring the top quark mass, we divide the \(t\bar{t} \) candidate
sample into events with and without secondary vertex \(b \) tags [18], which have very different purity. We only
attempt to \(b \) tag the two highest \(E_T \) jets. Table I summarizes the composition of background events and the
expected numbers of \(t\bar{t} \) and background events. We estimate the \(t\bar{t} \) signal event rates using PYTHIA v6.216
with CTEQ5L [19] parton distribution functions at leading order with a full detector simulation [20].

To calculate \(m_{T2} \) of a \(t\bar{t} \) dilepton event [7], we first identify all possible configurations corresponding to
different assignments of jets to \(b \)-quarks and combinations of quarks and leptons. The two most energetic
jets in an event are considered to have originated from the \(b \)-quarks. For each configuration, we calculate the
transverse mass of each top quark \((t \rightarrow bl\nu) \) using Eq. (2):

\[
m_T = \sqrt{m_{bl}^2 + m_\nu^2 + 2(E_T^{bl}E_T^\nu - p_T^{bl} \cdot p_T^\nu)}.
\]

where \(m_{bl} \) and \(p_T^{bl} \) denote the invariant mass and transverse momentum of the bottom-quark jets and charged
lepton \((bl)\) system, \(m_\nu \) and \(p_T^\nu \) are the mass and transverse momentum of the neutrino, and \(E_T^{bl} \) and \(E_T^\nu \) are the
transverse energies of the \(bl \) system and neutrino:

\[
E_T^{bl} = \sqrt{|p_T^{bl}|^2 + m_{bl}^2} \quad \text{and} \quad E_T^\nu = \sqrt{|p_T^\nu|^2 + m_\nu^2}.
\]

\[\text{FIG. 1 (color online). The } m_{T2} \text{ distributions from } t\bar{t} \text{ dilepton Monte Carlo events that pass the selection criteria}
\text{for three input values of the top quark mass. Each distribution is normalized to have unit area.}\]
We then calculate m_{T2} using Eq. (1) with the assumption $m_e = 0$, and for all possible parton assignments. We select the smallest value for each event. Figure 1 shows simulated m_{T2} distributions for various top quark masses for the combined non-b-tagged and b-tagged sample, which demonstrates that m_{T2} is sensitive to M_{top}, and thus can be used to measure it.

IV. MASS FIT

We estimate the probability density functions (PDFs) of signals and background using the kernel density estimation (KDE) [21,22] that constructs the PDF without any assumption of a functional form. For the mass measurement with two observables, we use the two-dimensional KDE that accounts for the correlation between the two observables. First, at discrete values of M_{top} from 130 GeV/c^2 to 220 GeV/c^2 with increments of 0.5 GeV/c^2 in the region immediately above and below 175 GeV/c^2 near the extreme mass values, we estimate the PDFs for the observables from $76-\bar{t}\bar{t}$ MC samples. Each sample consists of 0.6 to 4.8 M generated events, with 1 M events corresponding to a luminosity of 150 fb$^{-1}$, assuming a $\bar{t}\bar{t}$ cross section of 6.7 pb [23]. We smooth and interpolate the MC distributions to find PDFs for arbitrary values of M_{top} using the local polynomial smoothing method [24]. We fit the distributions of the observables in the data to the signal and background PDFs in an unbinned extended maximum likelihood fit [25], where we minimize the negative logarithm of the likelihood using MINUIT [26]. The likelihood is built for the b-tagged and non-b-tagged categories separately and then combined by multiplying the two categories. We find the statistical uncertainty on M_{top} by searching for the points where the negative logarithm of the likelihood minimized with respect to all other parameters deviates by 0.5 units from the minimum. Reference [22] provides detailed information about this technique.

We test the mass fit procedures using 3,000 pseudo-experiments for each of 14 different top quark masses ranging from 159 GeV/c^2 to 185 GeV/c^2 with almost 2 GeV/c^2 step size. In each experiment, we select the numbers of background events from a Poisson distribution with a mean equal to the expected numbers of background events in the sample and the numbers of signal events
from a Poisson distribution with a mean equal to the expected numbers of signal events assuming a $t\bar{t}$ pair production cross section of 6.7 pb. The distributions of the average mass residual (deviation from the input top mass) and the width of the pull (the ratio of the residual to the uncertainty reported by MINUIT) for simulated experiments show that the measured top quark mass is on average 0.26 ± 0.10 GeV/c^2 lower than the true top quark mass and has no dependence on M_{top} in the m_{T2} measurements. We correct the measurement for this bias. No such bias is observed with the combined (m_{T2}, m_t^{NWA}) measurement. In all cases, the fit on average correctly estimates the statistical uncertainties, based on the pull width distribution being consistent with unity. For $M_{top} = 175$ GeV/c^2, we expect the statistical uncertainties on M_{top} to be 4.0 GeV/c^2 with m_{T2}, 3.4 GeV/c^2 with m_t^{NWA}, 5.4 GeV/c^2 with H_T, 2.9 GeV/c^2 with (m_{T2}, m_t^{NWA}) combined, and 3.2 GeV/c^2 with (m_t^{NWA}, H_T) combined.

V. SYSTEMATIC UNCERTAINTIES

We examine a variety of systematic effects that could affect the measurement by comparing MC simulated experiments in which we vary relevant parameters within their systematic uncertainties. The dominant source of systematic uncertainty is the light quark jet energy scale (JES) [27]. We vary JES parameters within their uncertainties in both signal and background MC generated events and interpret the shifts as uncertainties. The b-jet energy scale systematic uncertainty arising from our modeling of b fragmentation, b hadron branching fractions, and calorimeter response captures the additional uncertainty not taken into account in the light quark jet energy scale. The uncertainty arising from the choice of MC generator is estimated by comparing MC simulated experiments generated with PYTHIA and HERWIG [28]. We estimate the systematic uncertainty due to modeling of initial-state gluon radiation (ISR) and final-state gluon radiation (FSR) by extrapolating uncertainties in the p_T of Drell-Yan events to the $t\bar{t}$ mass region [29]. We estimate the systematic uncertainty due to parton distribution functions by varying the independent eigenvectors of the CTEQ6M [30] parton distribution functions, varying Λ_{QCD}, and comparing CTEQ5L [19] with MRST72 [31] parton distribution functions. In estimating the systematic uncertainty associated with uncertainties in the top quark production mechanism, we vary the fraction of top quarks produced by gluon-gluon annihilation from 6% to 20%, corresponding to the one standard deviation upper bound on the gluon.
fusion fraction [32]. We estimate systematic uncertainties due to the lepton energy and momentum scales by propagating shifts in electron energy and muon momentum scales within their uncertainties. Background shape systematic uncertainties account for the variation of the background composition. In addition, we change the shape of the Drell-Yan background sample according to the difference in the missing energy distribution observed in data and simulation, and the shape of the QCD multijet model. We estimate the multiple hadron interaction systematic uncertainties to account for the fact that the average number of interactions in our MC samples are not equal to the number observed in the data. We extract the mass dependence on the number of interactions in MC pseudo-experiments by dividing our MC samples into subsamples with different number of interactions. We then multiply the slope of the result by the difference in the number of interactions between MC events and data and treat that as a systematic uncertainty.

It has been suggested that color reconnection (CR) effects could cause a bias in the top quark mass measurement and interpretations at the level of 0.5 GeV/c² [33]. We estimate uncertainties arising from CR effects using the PYTHIA-6.4 MC generator, which includes CR effects and other new features in modeling the underlying event, initial and final-state radiation, and parton showering. We generate two MC samples, one using tune A [34], which is very similar to the tune for CDF nominal MC generations, the other using ACR [33], which includes CR into the tune A. We take the difference in the extracted mass between these two MC samples as a systematic uncertainty. We measure the difference to be 0.6 GeV for TABLE II. Estimated statistical (M_top = 175 GeV/c²), systematic, and total uncertainties in GeV/c².

<table>
<thead>
<tr>
<th>Source of Uncertainty</th>
<th>m_{T2}</th>
<th>m_{NWA}</th>
<th>H_T</th>
<th>(m_{NWA}, m_{T2})</th>
<th>(m_{NWA}, H_T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical</td>
<td>4.0</td>
<td>3.4</td>
<td>5.4</td>
<td>2.9</td>
<td>3.2</td>
</tr>
<tr>
<td>Systematic</td>
<td>2.6</td>
<td>3.5</td>
<td>3.7</td>
<td>3.0</td>
<td>3.4</td>
</tr>
<tr>
<td>Jet energy scale (light quarks)</td>
<td>0.3</td>
<td>1.0</td>
<td>2.6</td>
<td>0.5</td>
<td>1.3</td>
</tr>
<tr>
<td>Generator</td>
<td>0.5</td>
<td>0.6</td>
<td>1.8</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td>Parquet distribution functions</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Background shape</td>
<td>0.4</td>
<td>0.3</td>
<td>0.7</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Gluon fusion fraction</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
<td><0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Initial- and final-state radiation</td>
<td>0.6</td>
<td>0.2</td>
<td>0.6</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>MC statistics</td>
<td>0.3</td>
<td>0.3</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Lepton energy</td>
<td>0.6</td>
<td>0.2</td>
<td>0.7</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Multiple hadron interaction</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Color reconnection</td>
<td>0.7</td>
<td>0.6</td>
<td>2.5</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>2.9</td>
<td>3.8</td>
<td>5.7</td>
<td>3.2</td>
<td>3.8</td>
</tr>
<tr>
<td>Total</td>
<td>5.0</td>
<td>5.1</td>
<td>7.8</td>
<td>4.3</td>
<td>5.0</td>
</tr>
</tbody>
</table>
As a cross-check, we generate two other MC samples, one using tune S_0 [33] and the other using NOCR [33], which include all of the new features with and without CR. We find a similar mass difference between the two samples.

Table II summarizes the sources and estimates of systematic uncertainties. The total systematic uncertainties, adding them in quadrature, are 2.9 GeV/c^2 with m_{T_2}, 3.8 GeV/c^2 with $m_{t^{\text{NWA}}}$, 5.7 GeV/c^2 with H_T, 3.2 GeV/c^2 with (m_{T_2}, $m_{t^{\text{NWA}}}$) combined, and 3.8 GeV/c^2 with ($m_{t^{\text{NWA}}}$, H_T) combined. The m_{T_2} method has a jet energy scale uncertainty significantly smaller than $m_{t^{\text{NWA}}}$, resulting in the smallest total systematic uncertainty. Including both statistical and systematic uncertainties, we conclude that m_{T_2} is one of the best observables for the M_{top} measurement, comparable to the measurement using $m_{t^{\text{NWA}}}$. Using both m_{T_2} and $m_{t^{\text{NWA}}}$, we expect to achieve a 10% improvement in overall uncertainty over using m_{T_2} alone.

VI. RESULTS

We apply a likelihood fit to the data using observables discussed in this article. Figure 2 shows the one-dimensional log-likelihoods for m_{T_2} and (m_{T_2}, $m_{t^{\text{NWA}}}$) combined. Figure 3 shows the distributions of the observables used for the M_{top} measurements overlaid with density estimates using $t\bar{t}$ signal events with $M_{\text{top}} = 169$ GeV/c^2 and the full background model. The fit results are summarized in Table III. The extracted masses are consistent with each other and the statistical uncertainties are consistent with predictions from MC pseudo-experiments.

In conclusion, we present the top quark mass measurements in the dilepton channel using m_{T_2}. In 3.4 fb$^{-1}$ of CDF data, we measure M_{top} using m_{T_2} to be

![Graphs showing negative log-likelihood distributions for m_{T_2} and (m_{T_2}, $m_{t^{\text{NWA}}}$) combined.](image)
II. The measurements in this article are the first application of probability distributions using the top quark mass M_{top}.

Observables & M_{top} (GeV/c^2) & M_{top} (GeV/c^2) \\
\hline m_{T2} & $168.0^{+4.8}_{-4.0}$ (stat) \pm 2.9(syst) & $168.0^{+5.6}_{-5.0}$ \\
m_{t}^{NWA} & $169.4^{+3.3}_{-3.3}$ (stat) \pm 3.8(syst) & $169.4^{+5.0}_{-5.0}$ \\
H_T & $168.8^{+3.1}_{-2.5}$ (stat) \pm 5.7(syst) & $168.8^{+5.2}_{-5.2}$ \\
m_{t}^{NWA} and m_{T2} & $169.3^{+3.7}_{-3.2}$ (stat) \pm 3.2(syst) & $169.3^{+4.2}_{-4.2}$ \\
m_{t}^{NWA} and H_T & $169.6^{+2.8}_{-2.0}$ (stat) \pm 3.8(syst) & $169.6^{+4.8}_{-4.8}$

This is consistent with the most precise published result in this channel from the CDF [35] and D0 [36] Collaborations. We expect further improvements in M_{top} with these variables as CDF accumulates about a factor of 3 more data during Tevatron Run-II. The measurements in this article are the first application of the m_{T2} variable to data, and demonstrate that m_{T2} is a powerful observable for the mass measurement of the top quark.

FIG. 3 (color online). Distributions of the three variables used to estimate the top quark mass, showing the b-tagged and non-b-tagged samples separately. The data are overlaid with the predictions from the KDE probability distributions using the top quark mass $M_{\text{top}} = 169$ GeV/c^2 and full background model.

$$M_{\text{top}} = 168.0^{+4.8}_{-4.0}$$(stat) \pm 2.9(syst) GeV/c^2 = $168.0^{+5.6}_{-5.0}$ GeV/c^2, and using both m_{t}^{NWA} and m_{T2} to be

$$M_{\text{top}} = 169.3 \pm 2.7$(stat) \pm 3.2(syst) GeV/c^2 = 169.3 ± 4.2 GeV/c^2.
top quark in the dilepton channel. The methods described in this article will be applicable to other measurements at the Tevatron and soon at CERN’s Large Hadron Collider for discriminating new physics models and measuring the mass of heavy particles that decay into weakly interacting particles such as dark matter candidates.

ACKNOWLEDGMENTS

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and the National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and the Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

We use a right-handed cylindrical coordinate system with the origin in the center of the detector, where θ and ϕ are the polar and azimuthal angles and pseudorapidity is defined as $\eta = -\ln \tan(\theta/2)$. Transverse energy and momentum are $E_T = E \sin(\theta)$ and $p_T = p \sin(\theta)$, respectively, where E and p are energy and momentum. Undetected particles, such as neutrinos from leptonic W decays, lead to an imbalance of energy (momentum) in the transverse plane of the detector, $\not{E}_T (p_T^{\text{missing}})$.

15. A lepton is isolated if the total $E_T (p_T)$ within a cone with $\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.4$ centered on the lepton, minus the lepton $E_T (p_T)$, is less than 10% of the lepton $E_T (p_T)$ for electron (muon).