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Abstract

| will discussMCRbased photedetector amplification sectionsand Cherenkov
light sources for measurements a@harged particleand gamma rays. Supsec
resolution is predicted foithe largepulses such athoseproduced by a charged
particle or electromagneticshower traversing a photaletector entrance
window. Measuring events with stionm resolution inspace and time expands
the optical phase space from 4 to 6 dimensiqradlowingthe use of mirrors to
minimize expensiveinstrumented photo-sensitivearea
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Three Timing Cases to Distinguisr

The factors limiting the ultimate timing resolution
are different in each of the following cases:

1. Single optical photons (Scintillation or Cherenkov
2. Charged Particles above Cherenkov Threshold(H20,g
3. Electromagnetic showers from High Energy photons

| will talk first about #2 and #3, relativistic charged patrticle
and high energy photons, for which psec or spbec time
resolutions | believe are plausible given certain detection
criteria are met, before moving on to #1, for which ultimat
resolutions are determined by other factors and are
significantlylarger.

Note: In what follows | treat time and space
distances in the same units, I.e. c=1, and 1 psec
=300 microns; 1 nsec =1000 psec; 1 nsec =1 foot
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Criteria for SubPsec Timingl

Fast Source: A psec source In tiggace of many tphotons |
a time-space interval (example: Cherenkov light from a
charged particle traversing a radiator or the entrance

window of a photodetector );
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Cherenkov photongI \

/ \ ~J /
Window Photocathode MCP Anode

( Or early in an electromagnetic shower such as in a-pre
radiator or EM calorimeter ( separate discussion));
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Criteria for SubPsec Timing

Plsec-:;evel pixel size (example: 3P0 micron pores in an MC
plate
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Criteria for SubPsec Timings

Hi%h gain. The gain has to be high enough that a single
LIK2U2Y UNAIISNBRZ ADPSP UKS
leading edge of the pulse and consequently the timing.
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Amplification section: Gakwbandwidth, Signakto-Noise,
Power, Cos{eg two-stages oMgOMCPs give gain >I
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Criteria for SubPsec Timingl

Lownoise; Voltage jitter under the leading edge translates
to time Jitter crossing threshold. noise:

p?

“Either cheer up or take off the hat.”
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Signailto-Noise, Risdime Dependences

Long discussion@JC workshops)of dependence on analog
bandwidth, gain, noise, digitization methods, etc. ;

Answer (SRitt) is thatat the level of present performance,
using waveform sampling, the achievable time resolution |
well-described by three parameters: 1) analbgand-width
(aka risetime); 2) sighalto-noise; and 3) the sampling rate
(assuming sufficient number of bits not to limit).

A Show typical pulses (Event 0, so not typical, but randor

A Show waveform sampling

A Show Stefarw A (Rul€éb&Thumb. For a samplingate
proportional to analog bandwidtmA 4 Qa 2yt e
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Breaking the 1Psedarrier?

StefanRitt (PSI) table from 2 Chicago Photocathode
WOrkShOp(annotated) (se@sec.uchicag@dulibrary)

Sampling Bandwidth Resolution

i S
2 GSPS 300 MHz
2 GSPS 300 MHz -

m 0 GSI | |

Signal Noise

o b e L
\'

"LAPPD1V | 0.7 mv_ 15 GS/secl.5 GHz

Before 100fsecad 2 YSU KA Y 3 St asS gAff
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Measuring time { from a pulse

Simple discriminator Constant Fraction 10 GS/sec
(single threshold) discriminator (CFD) Waveform Samplin
(10 bits/ pt PSEC4
Waveform sampling is basically a fast digital scope on each chanr
measures the baseline, pulse shape, pupe, and allows averagln%_
10

the noise with N samples on the leading edge (noise can have
bandwidth than signal, unfortunately)

J-F. Genat(.Varner F. Tang, HJPFicesecondResolution Timinlyleasurements
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61 2YSONBEGS6Q mp D-
Waveform Sampling Systergi<2: ™

.Dthesis

Central Card
* Controls 4 front-end boards Now 64 (1920 channels)
* USB 2.0 or gigabit Ethernet PC connection Now +SFP and VM
* Daisy chain or tree configurations to extend
system channel count
* Clock fan-out

We have a new Central CartMirceaBogdan

Front-end PSEC4 Card (“AC/DC Card"”)
* 30 channels PSEC4 waveform recording
* At 10GS/s, captures a 25 ns snapshot per
waveform  Looking for PSEC4A support
* USB 2.0 standalone readout or 8x LVDS lines
communication to Central Card Now +SFP and VME

58"

LVDS system interface
* Up to 800 Mbps data rate per line

* Clock, trigger, configuration
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Present Time Resolution
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large S/N limit (0.51.5p9)

Highly nonoptimized system (3 could do much better
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liming res. agrees with M
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M. Wetstein B. Adams, Alagin R.Obaid A.Vostrikow X

5/24/2017 MPGD 20171 ;5Ie University

13



Largesignal Limit bependenc

Does the time resolution go as 1/N difroot-N photo-

Hypothesis: electrons?
A In an MCPPMT the time jitter is dominated by thest
strike- path length to F' strike varies
A Smaller pores, increased bias angle are better
A IF gain is such that a single photon shower makes tt
pulse (e.g. 2E7), time |itter Is set by the probability

-

that NO photon has arrived in interval delta
'F lﬁ
W |

MW\ ‘spoiled end

E.g Cherenkin window- If 50 photoelectrons arrivevithin
50 psec, the probabillity that one goes fdrpsec with NO

14

photon making a first strikegoes as ¢ => a 1/N




Demonstrated Position Sensitivity
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Applications 1: Vertexing using arrival 45points

E.g.rare Kaon decaysackground rejection by
reconstructingp® vertex space point: (also eta)

E.g. for KOTOvauWah, JPARCheat Detector

down combinatoric p® backgrounds Plane
Vertex (e.gp®>gy P | mxw
T, X, Y, Z e (tl-t\’)c :
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times and positions
3D reconstruction

(TA%, )
N.B. PhotorDrift Velocity is0.298 mm/psec
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Applications: 2-Colliders:

Goals:1) identify the quark content of charged particles
2) assign tracks to vertices (e.g. CMS forwéditdal)
3) vertex photons at colliders;

Aside:Use
photons Sand
electrons)as
reference time

l.e. do differential
- A TN LR N timing of tracks
e SRl T L3 from the same
vertex to
eliminate external
clock jitter
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The 39 Case Optical Photons-UsingLight
Drift Times for 3D Imaging

A Use timespace photodetectors as a larggrea (10
100 n¥) manyLJA ESt WOl Y53 pékcQ ¢
resolution to reconstruct images in 3D .

A Analogoustob @ ANFPERQF O h LIG A Ol
Nicholson} drift photons instead of electrons.

A Current LAPPD microstrip readout gives 700 mic
by 700 micron resolution for a 90cm x 20cm anoc
with cheap CMOS readougives 2x10pixels/m?

A Resolution in 8 dimension set by timing: 50 psec
cET ™M L¥i&aéhs Makeyvaxaisin 3-space

A Longitudinal information allows unambiguous use
A of mirrors
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ElectronTPC andheOptical TPC

A Drift electrons at constant A Drift photons at constant

A

A
A
A

velocity (E field)

Limit diffusion with B field A
Chargedparticles create A
lonization alongtrack

Collect position and time A
at end of drift

Electrons are used only A
once (only 1 path in)

velocity

Limit dispersion by variou
stratagems [nc. near light)

Charged particles create
Cherenkov lightalongtrack

Collecto‘:)psition and time ;
end of drift

Photons can be reflected
Increase sensitive area
using path length to
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Build a little prototype and test In

Fermilab test beam (muons)
Water Flat mirrors Ercn o S Nahpossis

¢ (single person experiment
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The OTP¢ a S a

PhotonisPlanaconwith
32x32 anode pad array

Unterminated 50
coax cables

—C

photon(t,, X)

CA BFPMTs

—Iines

50 coax cables
to psec4 digitizin
J-fkontend chips

- o b5
O D
Erich 6 S NEh.Dt@esis
(single person experiment)
5/23/2017

ty B2
> >
0 Time
2

Direct and
reflected pulses

MPGD 2017 Temple University 22



