The Development of Large-Area Thin Planar Psec Photodetectors

Henry Frisch, Enrico Fermi Institute and ANL
Three Goals of a New (1 yr-old) Collaborative Effort:

1. Large-Area Low-Cost Photodetectors with good correlated time and space resolution (target 10 $/sq-in incremental areal cost)

2. Large-Area TOF particle/photon detectors with psec time resolution (< 1psec at 100 p.e.)

3. Understanding photocathodes so that we can reliably make high QE, tailor the spectral response, and develop new materials and geometries (QE > 50%?, public formula)
Detector Development - 3 Prongs

MCP development - use modern fabrication processes to control emissivities, resistivities, out-gassing

Use Atomic Layer Deposition for emissive material (amplification) on cheap inert substrates (glass capillary arrays, AAO). Scalable to large sizes; economical; pure – i.e. chemically robust and (it seems- see below) stable

Readout: Use transmission lines and modern chip technologies for high speed cheap low-power high-density readout.

Anode is a 50-ohm stripline. Scalable up to many feet in length; readout 2 ends; CMOS sampling onto capacitors- fast, cheap, low-power (New idea- make MCP-PMT tiles on single PC-card readout- see below)

Use computational advances - simulation as basis for design

Modern computing tools allow simulation at level of basic processes- validate with data. Use for `rational design’ (Klaus Attenkofer’s phrase).
Atomic Layer Deposition (ALD) Thin Film Coating Technology

- Atomic level thickness control
- Deposit nearly any material
- Precise coatings on 3-D objects

Lots of possible materials => much room for higher performance

Jeff Elam pictures

ALD Thin Film Materials

- Oxide
- Nitride
- Phosphide/Arsenide
- Sulphide/Selenide/Telluride

Elements

Carbide
- Fluoride
- Dopant
- Mixed Oxide
High (multi-GHz) ABW readout

New Idea (Herve' Grabas)-Put bottom traced on PC-card (not on the glass).

Note signal is differential between ground (inside, top), and PC traces (outside)
Simulation (crosses all groups)
Valentin Ivanov, Zeke Insepov, Zeke Yusof, Sergey Antipov

Spoiled end. Color: field angle

Previous calculations

Trajectories

- TTS simulation, E_{sec}=2 eV, direct channel, Gain = 14
 - Crossing mode

- TTS simulation, E_{sec}=2 eV, tilted 7.5°, Gain = 143
 - Switching to hopping mode

- TTS simulation, E_{sec}=2 eV, tilted 10° channel, Gain = 3730
 - Well-defined hopping mode

Funnel (!)
UCB Concept ‘B’ 8” Tube Design

• Jason McPhate
• Experimental Astrophysics Group
• Space Sciences Laboratory
• University of California, Berkeley
The 24”x16” SuperModule
Sealed Tube (Tile) Construction

• All (cheap) glass
• Anode is silk-screened
• No pins, penetrations
• No internal connections
• Anode determines locations (i.e. no mech tolerancing for position resolution)
• Fastens with double-sticky to readout Tray: so can tile different length strings, areas
• Tile Factory in works (ANL)
8” Glass Package Component Costs

<table>
<thead>
<tr>
<th>Component</th>
<th>Quotations</th>
<th>Cost estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
<td>1000</td>
</tr>
<tr>
<td>Window (1@)</td>
<td>$18</td>
<td>13</td>
</tr>
<tr>
<td>Side wall (1@)</td>
<td>$78</td>
<td>55</td>
</tr>
<tr>
<td>Base plate (1@)</td>
<td>$20</td>
<td>13</td>
</tr>
<tr>
<td>Rod Spacers (75@)</td>
<td>$7</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>$641</td>
<td>$306</td>
</tr>
</tbody>
</table>

The above prices are for water jet cut B33 glass, tol. +/- 0.010, except rod spacers +/-0.004

To this add 2 8” plates (@250?), ALD (Bulk), PC, assembly
• 130nm IBM 8RF Process
• This chip 4 channels, 256 deep analog ring buffer
• Sampling tested at 11 GS/sec
• Each channel has its own ADC - 9 bits eff (?)
• The ADCs on this chip didn’t work due to leakage (silly, didn’t simulate slow easy things) - resubmitted, and test card out for fab with external ADC - will use 1 of 4 chnls
• We’re learning from Breton, Delagnes, Ritt and Varner (Gary is of course a collaborator)
Proceed in 3 steps: 1) hermetic box; 2) Add MCP’s, readout, (Au cathode); 3) Add photocathode

Possible Au anode
Application to Colliders

At colliders we measure the 3-momenta of hadrons, but can’t follow the flavor-flow of quarks, the primary objects that are colliding. 2-orders-of-magnitude in time resolution would all us to measure ALL the information=>greatly enhanced discovery potential.

A real top candidate event from CDF- has top, antitop, each decaying into a W-boson and a b or antib. Goal- identify the quarks that make the jets. (explain why…)

Specs:
Signal: 50-10,000 photons
Space resolution: 1 mm
Time resolution 1 psec
Cost: <100K$/m2:

t-tbar -> W^+bW^-bbar-> e+ nu+c+sbar+b+bbar
Rather than use the Start time of the collision, measure the difference in arrival times at the beta-c particles (photons, electrons and identified muons) and the hadrons, which arrive a few psec later.
Application 2 - Neutrino Physics

- Spec: signal single photon, 100 ps time, 1 cm space, low cost/m2 (5-10K$/m2)*

(Howard Nicholson)
New Idea: Hi-res H$_2$O

- Spatial Res of $<$1cm plus $>$50% coverage would allow working close to the walls \Rightarrow greater Fid/Tot ratio;
- Also would make curve of Fid/Tot flatter wrt to symmetry- could make a high, long, narrow (book-on-end) detector at smaller loss of F/T;
- Cavern height cheaper than width; robust tubes can stand more pressure
- Narrow may allow magnetic field (!)
New idea: Hi-Res H$_2$O-continued

- 100 psec time resolution is 3cm space resolution ALONG photon direction;
- Transverse resolution on each photon should be sub-cm;
- Question- can one reconstruct tracks?
- Question- can one reconstruct vertices?
- Question- can one distinguish a pizero from an electron and 2 vertices from one? (4 tracks vs 1 too)
Question: Can we reconstruct the first 3 radiation lengths of an event with resolution \(~1/10\) of a radiation length?

Handles on pizero-electron separation: 2 vs 1 vertices; no track vs 1 track between primary vertex and first photon conversion; 2 tracks (twice the photons) from the 2 conversion vertices;

Know photon angle, lots of photons-fit to counter dispersion, scattering;

Book-on-end aspect ratio helps against dispersion, scattering-have to look at whole picture.
- Can localize source along line of flight.
- Time of flight information reduces noise in images.
- Variance reduction given by $2D/c\Delta t$.
- 500 ps timing resolution $\Rightarrow 5x$ reduction in variance!

Time of Flight Provides a Huge Performance Increase!

Largest Improvement in Large Patients
Can we solve the depth-of-interaction problem and also use cheaper faster radiators?

Simulations by Heejong Kim (Chicago)

Alternating radiator and cheap 30-50 psec planar mcp-pmt's on each side

Depth in crystal by time-difference

Depth in crystal by energy-asymmetry
A radical idea driven by sampling calorimeters based on thin cheap fast photodetectors with correlated time and space waveform sampling

- Both Photons Deposit >350 keV

Give up on the 511 KeV energy cut for bkgd rejection (!?), Give up on the Compton fraction (!??), and instead use cheaper faster lower-density scintillator, adaptive algorithms, and large-area to beat down background.

Question for wkshp- candidate scintillators (Ren-yuan suggests BaF2- even lower density candidates?)
Medical Imaging (PET)-cont.

Spec: signal 10,000 photons, 30 ps time resolution, 1 mm space resolution, 30K$/m2, and commercializable for clinical use.

SUMMARY

However- truth in advertising- there is a long way to go (see Bill Moses’s talk at Clermont.) It looks promising, as it may be possible to produce large panels with better spatial and time resolution than possible with photomultipliers, and our initial estimates are that MCP-PMT’s may be as much as a factor of 10 cheaper. However, the development will take a collaborative effort on measurements and simulation (see papers by Heejong Kim et al on web and in this conference). Talks are also underway among Clermont, Strasbourg, Lyon, and Chicago.
Application 4- Cherenkov-sensitive Sampling

Quasi-Digital Calorimeters

A picture of an em shower in a cloud-chamber with ½” Pb plates (Rossi, p215- from CY Chao)

A ‘cartoon’ of a fixed target geometry such as for JPARC’s KL-> pizero nunubar (at UC, Yao Wah) or LHCb

Idea: planes on one side read both Cherenkov and scintillation light- on other only scintillation.
Can one build a `Quasi-digital' MCP-based Calorimeter?

Idea: can one saturate pores in the MCP plate s.t. output is proportional to number of pores. Transmission line readout gives a cheap way to sample the whole lane with pulse height and time - get energy flow.

Electron pattern (not a picture of the plate!) - SSL test, Incom substrate, Arradiance ALD. Note you can see the multi's in both plates => ~50 micron resolution

Oswald Siegmund, Jason McPhate, Sharon Jelinsky, SSL (UCB)
More Information:

- Main Page: http://psec.uchicago.edu
- Library: Image Library, Document Library, Year-1 Summary Report, Links to MCP, Photocathode, Materials Literature, etc.;
- Blog: Our log-book- open to all (say yes to certificate Cerberus, etc.)- can keep track of us (at least several companies do);
- Wish us well- goal is in 3 years (2 from now) to have commercializable modules- too late for the 1st round of LBNE, but maybe not too late for a 2nd or 3rd-generation detector.
The End
Backup
The Development of Large-Area Fast Photo-detectors
April 15, 2009

John Anderson, Karen Byrum, Gary Drovis, Edward May, Alexander Paramonov, Mayly
Sanchez, Robert Stanek, Hendrik Weerts, Matthew Wesstein1, Zikri Yusof
High Energy Physics Division
Argonne National Laboratory, Argonne, Illinois 60439

Bernhard Adams, Klaus Attwood
Advanced Photon Source Division
Argonne National Laboratory, Argonne, Illinois 60439

Zole Isaposov
Mathematics and Computer Sciences Division
Argonne National Laboratory, Argonne, Illinois 60439

Jeffrey Elam, Joseph Libera
Energy Systems Division
Argonne National Laboratory, Argonne, Illinois 60439

Michael Pelin, Igor Veryovkin, Hau Wang, Alexander Zinovev
Materials Science Division
Argonne National Laboratory, Argonne, Illinois 60439

David Desalvo, Neal Sullivan, Ken Stanton
Armadiant Inc., Sudbury, MA 01776

Mirea Bogdan, Henry Frisch2, Jean-Francois Genat, Mary Heintz, Richard Northrop, Fuku
Tang
Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637

Erik Haraiberg, Anatoly Rozhitin, Greg Seilberg
Fermi National Accelerator Laboratory, Batavia, Illinois 60510

James Kennedy, Kurtis Nishimura, Marc Rosen, Larry Ruckman, Gary Varner
University of Hawaii, 2505 Cororea Road, Honolulu, HI, 96822

Robert Abram, Valentin Ivanov, Thomas Robertis
Muons, Inc 552 N. Balboa Avenue, Balboa, IL 60510

Jerry Yau
SLAC National Accelerator Laboratory, Menlo Park, CA 94025

Oswald Siegrumand, Anton Trensin
Space Sciences Laboratory, University of California, Berkeley, CA 91720

Dmitri Roudkevitch
Syncera Technologies Inc., Longmont, CO 80501

David Forbush, Tianchi Zhao
Department of Physics, University of Washington, Seattle, WA 98195

1 Joint appointment Argonne National Laboratory and Enrico Fermi Institute, University of Chicago

3 National Labs, 6 Divisions at Argonne, 3 US small companies; electronics expertise at UC Berkely, and the Universities of Chicago and Hawaii

Goal of 3-year R&D-commercializable modules.

DOE Funded (a little NSF)
Organization Chart
R&D Program for the Development of Large-Area Fast Photodetectors

4 Groups + Integration and Management
Parallel Efforts on Specific Applications

LAPD Detector Development

- PET (UC/BSD, UCB, Lyon)
- Collider (UC, ANL, Saclay)
- Muon Cooling
 - Muons, Inc (SBIR)
- DUSEL
 - Matt, Mayly, Bob, John, ..
- Security (TBD)
- Mass Spec
- K->πνν (UC(?))

Explicit strategy for staying on task

All these need work - naturally tend to lag the reality of the detector development
Put it all together- the `Frugal’ MCP

- Put all ingredients together- flat glass case (think TV’s), capillary/ALD amplification, transmission line anodes, waveform sampling

- Glass is cheap, and they make vacuum tubes out of it- why not MCP’s?
GodParent Review Panels

Packaging Group
- Karen Byrum
- K. Arisaka
- J. Elam
- D. Ferenc
- J.F. Genat
- P. Hink
- A. Ronzhin

MCP Group
- Bob Wagner
- K. Attenkofer
 - A. Bross
- Z. Insepov
 - A. Tremsin
- J. Va'vra
- A. Zinovev

Photocathode Group
- Gary Varner
 - J. Buckley
 - K. Harkay
 - V. Ivanov
 - A. Lyashenko
 - T. Prollier
 - M. Wetstein

Electronics Group
- Zikri Yusof
 - B. Adams
 - M. Demarteau
 - G. Drake
 - T. Liu
 - I. Veryovkin
 - S. Ross
Klaus Attenkofer, Sasha Paramonov, Zikri Yusof, Junqi Xi, Seon Wu Lee, UIUC, WashU, ….

- III-V have the potential for high QE, shifting toward the blue, and robustness i.e. they age well, high-temp.
- Opaque PC’s have much higher QE than transmission PC’s- we have the geometry.
- Many small factors to be gained in absorption, anti-reflection- see papers by Townsend and talk by Fontaine on our web site.
- Quantum Effic. Of 60% have been achieved in bialkalis.

Big payoff if we can get >50% QE robust Photocathodes, and/or more robust (assembly). Also want to get away from `cooking recipes’ to rational design.
Some Neutrino-specific Thoughts

NEXT STEPS? (needs discussion…)

- Simulation
 - Pizero/electron vertex recon
 - True track reconstruction
 - Proton Decay

- Proto-type Testing in situ: Can we add some SuperModules to an existing water/scint detector (apologies for my ignorance)?

- A new small near detector proto-type/test-bed for Fermilab?

- Other?