Future SBN and LBN Physics Programs at Fermilab

January 29, 2015

David Schmitz

THE UNIVERSITY OF CHICAGO

Future SBN and LBN Physics Programs at Fermilab

short-baseline neutrino

long-baseline neutrino

SBN

LBN

200 ton LAr-TPC
SBN detector

34,000 ton LAr-TPC
LBN detector

FIGURE 16. Schematic of a 34-kt fiducial mass LArTPC design (left). The detector comprises two 17-kt fiducial mass LArTPC detectors. The design of a pair of Anode Plane Assemblies is shown at right.
Recommendation 12: In collaboration with international partners, develop a coherent short- and long-baseline neutrino program hosted at Fermilab.

Recommendation 15: Select and perform in the short term a set of small-scale short-baseline experiments that can conclusively address experimental hints of physics beyond the three-neutrino paradigm. Some of these experiments should use liquid argon to advance the technology and build the international community for LBNF at Fermilab.
Long-Baseline Physics Goals

- Test CP violation in the lepton sector
- Determine the mass ordering of the neutrinos
- Test the three-neutrino paradigm

Neutrino Mixing Matrix

$$\begin{pmatrix}
 v_e \\
 v_\mu \\
 v_\tau
\end{pmatrix} =
\begin{pmatrix}
 U_{e1} & U_{e2} & U_{e3} \\
 U_{\mu1} & U_{\mu2} & U_{\mu3} \\
 U_{\tau1} & U_{\tau2} & U_{\tau3}
\end{pmatrix}
\begin{pmatrix}
 v_1 \\
 v_2 \\
 v_3
\end{pmatrix}$$

Flavor States

$$P(v_\mu \to v_e) \approx \sin^2 \theta_{23} \sin^2 2\theta_{13} \frac{\sin^2(\Delta_{31}-aL)}{(\Delta_{31}-aL)^2} \Delta_{31}^2$$

$$+ \sin 2\theta_{23} \sin 2\theta_{13} \sin 2\theta_{12} \frac{\sin(\Delta_{31}-aL)}{\Delta_{31}-aL} \frac{\sin(aL)}{aL} \Delta_{21} \cos(\Delta_{31} + \delta_{CP})$$

where, $$\Delta_{ij} = \Delta m^2_{ij} L / 4E$$, and $$a = G_F N_e / \sqrt{2}$$.

Mass Eigenstates

$$\delta_{CP}$$ and $$a$$ switch signs in going from $$v_\mu \to v_e$$ to $$\bar{v}_\mu \to \bar{v}_e$$

- Atmospheric neutrinos
- Nucleon decay
- Astrophysical neutrinos (core-collapse supernova)
Fermilab Short-Baseline Neutrino Program

- **MINOS**
- **ICARUS – 760t LAr**
- **SBN FAR DETECTOR**
- **MiniBooNE DETECTOR**
- **LA/TF**
- **BOOOSTER RING**
- **WILSON HALL**

Near Detector
- **LAr1-ND 180t LAr**

Far Detector
- **BNB**
- **MicroBooNE 170t LAr**

2015 to Early 2020’s

D. Schmitz, UChicago
The physics goals of SBN and LBN are complementary:

- A major physics goal of LBN is to “test the 3-ν paradigm”
- SBN will contribute directly to this question through either a major discovery or by ruling out light sterile neutrinos in a range hinted at by previous anomalies (~0.1 - 10 eV²)

- LBN measurements will depend upon good knowledge of the physics of ν-Ar interactions
- SBN will study these interactions in detail with millions of events in the relevant energy range

Also, SBN a valuable demonstration of the LAr-TPC technology for precision neutrino physics
Results from multiple experiments have hinted at a possible additional oscillation. While each of the measurements alone lack the significance to claim a discovery, together they could be hinting at important new physics.

A discovery of light sterile neutrinos would, of course, have exciting implications for particle physics as well as cosmology.

SBN ν_e Appearance Sensitivity

SBN@FNAL

L ~ 600m
E ~ 600 MeV

- **LAr1-ND**
 - 6.6e+20 POT (100m)
 - Signal: ($\Delta m^2 = 0.43$ eV2, $\sin^2 2\theta_{\mu\nu} = 0.013$)
 - Statistical Uncertainty Only

- **MicroBooNE**
 - 1.32e+21 POT (470m)
 - Signal: ($\Delta m^2 = 0.43$ eV2, $\sin^2 2\theta_{\mu\nu} = 0.013$)
 - Statistical Uncertainty Only

- **ICARUS T600**
 - 6.6e+20 POT (600m)
 - Signal: ($\Delta m^2 = 0.43$ eV2, $\sin^2 2\theta_{\mu\nu} = 0.013$)
 - Statistical Uncertainty Only

T500, 6.6e+20 POT (600m)

- MicroBooNE, 1.32e+21 POT (470m)
- LAr1-ND, 6.6e+20 POT (100m)

INTERNAL

- ν_e mode, CC Events
- Reconstructed Energy
- 80% ν_e Efficiency
- Stat., X-Sec., Flux, Cosmics, Dirt

- ν_e Only Fit
 - 90% CL
 - 3σ CL
 - 5σ CL

LSND

Phys.Rev.D64, 112007 (2001)
arXiv:hep-ex/0104049
DM Opportunity with SBN Detectors

- Neutrino beam experiments running in beam-dump mode can perform Dark Sector searches, complementary to direct WIMP detection experiments
- Relativistic DM beam enables to search at lower DM masses, $M_\chi < 1$ GeV
- For low mass WIMPs, however, need new mediator, M_ν, to produce right relic density

Detect through elastic scattering of DM particle off electrons or nucleons in the neutrino detector, “Invisible V decays”

Electron machine expts look for “Visible V decay” into SM particles
 - $M_\nu < 2M_\chi$
 - $\text{Br}(V \rightarrow SM) \sim O(1)$

Beam-dump mode to suppress neutrino backgrounds (charged particles absorbed in dump w/o decay + no focusing)

Proton beam-dump (SBN)

- Signal events: Dark Green > 1000; Green: 10-1000; Light Green: 1-10
- These are signal sensitivity plots. Actual measurement sensitivities/limits will depend on background rates and systematic errors.
Backups
How a LAr-TPC Works

- Charged particles in argon create electron-ion pairs and scintillation light.
- Electrons are drifted towards the anode wires.
- Multiple anode planes together with drift time allow 3D reconstruction.
- Collected charge allows calorimetric reconstruction.
Electron/photon separation with LAr-TPCs

1 GeV electron shower

Decay of a 1 GeV π^0 to two photons.

MiniBooNE

94% gamma rejection @95% electron efficiency
MicroBooNE

- The first phase begins this year with MicroBooNE, installed in 2014 and coming online soon.
ICARUS-T600, WA104

- Successfully operated at Gran Sasso in CNGS beam
 - Achieved electron lifetimes > 15 ms
 - Physics program including limits on sterile neutrinos

- ICARUS-WA104 project at CERN
 - Refurbish ICARUS-T600 w/ new cryostats, electronics, upgraded light collection
 - Move from Gran Sasso to CERN, Dec 2014
 - Refurbishing underway!
 - Schedule: TPC delivered to FNAL as soon as building available on-site, currently foreseen as early 2017
LAr1-ND, T-1053

- A new detector, building on experience from ICARUS, MicroBooNE, 35ton, and based on current LBNE designs

- Provides an opportunity for prototyping baseline designs or developing alternative system designs
 - For example, LAr1-ND is an excellent test-bed for light collection concepts being developed for LBNF physics

- LAr1-ND approved at FNAL as T-1053 in summer 2014, now developing design, pursuing needed R&D
SBN Timeline

- SBN is an opportunity to further develop the LAr-TPC technology and to demonstrate its use in making precision measurements in neutrino physics

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>MicroBooNE running</td>
<td></td>
<td></td>
<td></td>
<td>Liquid Ar fill and commissioning</td>
</tr>
<tr>
<td>WA104 ICARUS-T600 refurbishment at CERN has begun</td>
<td>Complete T600 refurbishing</td>
<td>ND and FD building construction completed</td>
<td>T600 arrives at Fermilab</td>
<td>ND and FD running!</td>
</tr>
<tr>
<td>Develop ND technical designs & project schedules</td>
<td>ND cryostat construction</td>
<td>T600 installation</td>
<td>ND active detector assembly and installation</td>
<td>Liquid Ar fill and commissioning</td>
</tr>
<tr>
<td>Ground breaking on FD and ND buildings</td>
<td>ND TPC system construction</td>
<td>Cryogenic system construction for ND and FD</td>
<td>ND and FD running!</td>
<td>Liquid Ar fill and commissioning</td>
</tr>
<tr>
<td></td>
<td>Cryogenics system fabrication</td>
<td>Cern</td>
<td>Cern</td>
<td>Cern</td>
</tr>
</tbody>
</table>
Neutrino Interaction Physics and Event Reconstruction

- SBN detectors will provide huge data sets from the BNB on-axis and the NuMI off-axis fluxes
 - ND will record ~1.2M CC interactions in the fiducial volume per 2.2e20 pot, ~year of running (~7,000 ν_e)
 - Large complementary samples in MicroBooNE and T600
 - Order 100k NuMI off-axis events in T600 per year

- High statistics, precision measurements of neutrino +Ar cross sections in the relevant energy range are an important component in reaching systematics at level of 1% in LBNF

- Large data sets will require that event reconstruction and analysis become fully automated
 - Precision testing of event reconstruction and identification techniques possible with large SBN data sets
 - This development for SBN physics will have direct impact for LBN in the future
SBN ν_μ Disappearance Sensitivity

Far Detector Spectrum

ICARUS T600 (600m)
P.O.T. = 6.6 \times 10^{20}

$\Delta m^2 = 1.10$ eV2
$\sin^2(2\theta_{13}) = 0.10$

- Unoscillated
- Oscillated
- Ratio of Osc. to Unosc.

Far Detector Spectrum

ICARUS T600 (600m)
P.O.T. = 6.6 \times 10^{20}

$\Delta m^2 = 0.44$ eV2
$\sin^2(2\theta_{13}) = 0.10$

- Unoscillated
- Oscillated
- Ratio of Osc. to Unosc.
Minimal U(1) Dark Force Vector Portal Model
Opens up new annihilation channel for light WIMPs to achieve right relic density

\[\mathcal{L}_{\text{DM}} = V_\mu \left(e \kappa J^{\mu}_{\text{em}} + e' J^{\mu}_\chi \right) + \mathcal{L}_{\text{kin}}(V, \chi) + \cdots \]

Model assumptions:
1. \(e = e' \) (perturbative regime)
2. \(K \) is small
3. \(M_v > 2M_\chi \)

Assuming thermal relic, if you know \(m_\chi, m_V, \kappa, e' \)
you know the present DM density

This is just one of many possible portal interactions, e.g. sterile neutrino, scalar, Higgs, etc
Production:
• From proton-target interactions
• Requires intense beams with copious protons on target and variable energies (8 GeV, 120 GeV, etc)

Detection:
• Elastic scattering off of nucleons, electrons, or DIS
• Require near, large, sensitive, well-understood detectors

Neutrino sources and detectors are ideal for Dark Sector particle searches!
Run neutrino source in beam-dump mode to suppress the neutrino background (charged particles absorbed in dump w/o decay, no focusing)
Two Regimes for Light Mass Dark Matter Models: We Need to Investigate both Regimes!

- Electron and Proton dump experiments compliment each other and extend the search for the hidden/dark sector!
- SNOMASS endorses proton beam-dump searches, and specifically MiniBooNE/MicoBooNE. These type of searches are detailed in the SNOMASS, LBNE, and Project X white papers.

MiniBooNE: Proton Beam-dump

- $N_\chi \rightarrow N_\chi$, $m_\chi = 10$ MeV, $\alpha' = 0.1$, POT $\sim 2 \times 10^{20}$

Electron machines

- $m_\nu > 2M_\chi$
- $\text{Br}(V \rightarrow SM) \sim \kappa^2 \alpha'/\alpha$
- "Invisible V decay"

- $m_\nu < 2M_\chi$
- $\text{Br}(V \rightarrow SM) \sim O(1)$
- "Visible V decay"

Intense experimental activity.
Figure 4: Regions of dark matter-nucleon scattering cross section (corresponding to non-relativistic spin-independent coherent scattering on nuclei) vs dark matter mass. In this plot we have fixed $m_V = 300$ MeV and $\alpha' = 0.1$. Constraints are shown from monojet searches ($pp \to j + \text{inv.}$) [44], excessive contributions to $(g - 2)_\mu$ [21], precision electroweak measurements [38], a monophoton search ($e^+ e^- \to \gamma + \text{inv.}$) [39, 40, 41] (labeled BaBar), and low-mass limits from dark matter direct detection experiments, DAMIC [46] (1-3 GeV), CDMSlite [47] (3-5 GeV) and XENON10 [43] (5-10 GeV). Note that a slightly stronger exclusion contour to XENON10 has recently been obtained by LUX [48]. The light blue band represents the region where the current $\sim 3\sigma$ discrepancy in $(g - 2)_\mu$ is alleviated by the 1-loop contribution from the vector mediator [21]. The solid black line indicates where the relic density of the dark matter matches observations—the structure in this contour is due to s-channel V^* resonant enhancement in the dark matter annihilation cross section for $m_\chi \sim m_V / 2$. For $m_\chi > m_V$, new annihilation channels open up and this relation is modified. The left panel shows regions where we expect 1–10 (light green), 10–1000 (green), and more than 1000 (dark green) elastic scattering events off nucleons in the MiniBooNE detector with 1.75×10^{20} POT. The right panel shows the same for elastic scattering off electrons.
Signal Sensitivities for DM-NUCLEON Scattering (2E20 POT) Cross Section vs. Dark Matter Mass

- Signal events: Dark Green > 1000; Green: 10-1000; Light Green: 1-10
- These are signal sensitivity plots. Actual measurement sensitivities/limits will depend on background rates and systematic errors.

These and following plots are for reasonable choices of M_χ, M_ν, and $\alpha’ = 0.1$

Use of similar parameter values allow comparisons of different experiments.
Signal Sensitivities for DM-NUCLEON Scattering (2E20 POT)
Mixing Strength vs. Vector Mediator Mass

- Signal events: Dark Green > 1000; Green: 10-1000; Light Green: 1-10
- These are signal sensitivity plots. Actual measurement sensitivities/limits will depend on background rates and systematic errors.
Signal Sensitivities for DM-ELECTRON Scattering (2E20 POT) Cross Section vs. Dark Matter Mass

- **MiniBooNE-CH₂**
- **MicroBooNE-LAr**
- **LAr1-NearDetector**

- **Signal events:** Dark Green > 1000; Green: 10-1000; Light Green: 1-10
- These are signal sensitivity plots. Actual measurement sensitivities/limits will depend on background rates and systematic errors.
- Electron signal sensitivity down due to lower cross sections. However, using direction information will significantly improve measurement sensitivity.
Signal Sensitivities for DM-ELECTRON Scattering (2E20 POT)
Mixing Strength vs. Vector Mediator Mass

- **Signal events:** Dark Green > 1000; Green: 10-1000; Light Green: 1-10
- These are signal sensitivity plots. Actual measurement sensitivities/limits will depend on background rates and systematic errors.