θ_{13} at Double Chooz

Keith Crum

UChicago HEP Seminar October 20, 2014

Brief Neutrino Oscillation Review

Neutrino Oscillations

- First proposed by Pontecorvo in 1957, but only thoroughly confirmed in the late 1990s/early 2000s.
- Two different sets of eigenstates are required for neutrino oscillation:
 - Flavor states ν_{e} , ν_{μ} , ν_{τ} (Greek indices ν_{α})
 - Mass states ν_1 , ν_2 , ν_3 (Latin indices ν_i)

which are related by:

$$|
u_{lpha}
angle = \sum_{i} U_{lpha i} |
u_{i}
angle$$

- Neutrinos are produced and detected in flavor states (e.g. $\pi^+ \rightarrow \mu^+ \nu_{\mu}$), but they propagate as mass states.
- Oscillation probabilities are given by $P_{\alpha \to \beta} = \langle \nu_{\alpha} | \nu_{\beta} \rangle$:

$$P_{\alpha \to \beta} = \sum_{j} \left| U_{\beta j} \right|^{2} \left| U_{\alpha j} \right|^{2} + 2 \sum_{j \neq k} \left| U_{\beta j} U_{\alpha j}^{*} U_{\alpha k} U_{\beta k}^{*} \right| \cos \left(\frac{\Delta m_{jk}^{2} L}{2E} - \phi_{\alpha \beta j k} \right)$$

where $\phi_{\alpha\beta jk} \equiv \arg(U_{\beta j}U^*_{\alpha j}U_{\alpha k}U^*_{\beta k})$ and $\Delta m^2_{ij} \equiv m^2_i - m^2_j$.

Current Oscillation Knowledge

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = U \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$
$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

We have observed three left-handed weak flavor eigenstates which are non-trivial superpositions of three mass eigenstates. This mixing is parameterized by:

- 3 Euler angles: θ_{23} , θ_{12} , and θ_{13}
- 3 mass squared differences: Δm_{32}^2 , Δm_{31}^2 , and Δm_{21}^2
- One Dirac CP phase δ and possibly two Majorana phases (not shown).

Current Oscillation Knowledge

- Knowns: $|\Delta m_{32}^2| \approx |\Delta m_{31}^2|$, Δm_{21}^2 , $\theta_{12} \ (\sim 30^\circ)$, $\theta_{23} \ (\sim 40^\circ)$, and now $\theta_{13} \ (\sim 10^\circ)$
- Unknowns: CP phase δ and mass hierarchy

We have observed three left-handed weak flavor eigenstates which are non-trivial superpositions of three mass eigenstates. This mixing is parameterized by:

- 3 Euler angles: θ_{23} , θ_{12} , and θ_{13}
- 3 mass squared differences: Δm_{32}^2 , Δm_{31}^2 , and Δm_{21}^2
- One Dirac CP phase δ and possibly two Majorana phases (not shown).

Measuring θ_{13}

 One way to measure θ₁₃ is to look at ν
_e survival probability for small L/E:

$$P_{\overline{\nu}_e o \overline{\nu}_e} \simeq 1 - \sin^2 2\theta_{13} \sin^2 \left(1.267 \Delta m_{31}^2 \frac{L}{E} \right)$$

- Nuclear reactors produce copious $\overline{\nu}_e$ with $\mathcal{O}(MeV)$ energy
- Inverse beta decay (IBD) reactions are only initiated by electron flavor ve:

$$\overline{\nu}_{\rm e} + p \rightarrow e^+ + n$$

• $E_{e^+} = E_{\bar{\nu}_e} + T_n - 0.8$ MeV, however since T_n small, $E_{e^+} \simeq E_{\bar{\nu}_e} - 0.8$ MeV

Measuring θ_{13}

 One way to measure θ₁₃ is to look at ν
_e survival probability for small L/E:

$$P_{\overline{\nu}_e \to \overline{\nu}_e} \simeq 1 - \sin^2 2\theta_{13} \sin^2 \left(1.267 \Delta m_{31}^2 \frac{L}{E} \right)$$

- Nuclear reactors produce copious $\overline{\nu}_e$ with $\mathcal{O}(MeV)$ energy
- Inverse beta decay (IBD) reactions are only initiated by electron flavor ve:

$$\overline{\nu}_{\rm e} + p \rightarrow e^+ + n$$

• $E_{e^+} = E_{\bar{\nu}_e} + T_n - 0.8$ MeV, however since T_n small, $E_{e^+} \simeq E_{\bar{\nu}_e} - 0.8$ MeV

Double Chooz Overview

Double Chooz Experiment

Site Layout

Near detector

Double Chooz Far Detector

Double Chooz has an inner detector of three nested cylinders, which is further encased by an inner veto. The outer veto modules sit above the inner detector and inner veto.

Target and Gamma Catcher

- Target is 10 m³ (8.3 tons) of liquid scintillator doped with 1 g/L Gd.
 - $\sim 85\%$ of neutrons in target capture on Gd.
- Gamma Catcher is 550 mm shell of liquid scintillator around target (no Gd).
 - Nearly all gammas released by n+Gd are contained in scintillator → reliable 8 MeV signal.

Buffer

- Target and gamma catcher are surrounded by the buffer.
- Filled with non-scintillating mineral oil
- 390 low-activity Hamamatsu 10" PMTs
- Shields scintillator from PMT glass radioactivity, surrounding rock radioactivity, and neutrons.

Inner Veto

- Buffer vessel sits inside Inner Veto.
- IV is filled with liquid scintillator and instrumented with 78 Hamamatsu 8" PMTs.
- Used to veto muons and other cosmogenic backgrounds.
- Inner Veto surrounded by 15 cm thick steel shielding.

Outer Veto

- Active muon veto above main detector.
- Modules have long strips of plastic scintillator.
- Both Upper and Lower OV have two layers each of transverse strips to allow tracking.
- Module construction and installation performed by University of Chicago group.

Outer Veto Module Schematic

- Two layers of 32 scintillating strips each
- Wavelength shifting fibers in center bring light to PMT
- Module dimensions: 2 cm imes 1.6 m imes (3.2 m or 3.6 m)
- Built 130 modules in total; all tested in ACC high bay

Lower OV consists of two layers.

Lower OV consists of two layers.

Lower OV installed in spring 2011.

Keith Crum

Upper OV also consists of two layers.

Upper OV installed in summer 2012.

Calibration and Energy Scale

- Source deployments: ¹³⁷Cs, ⁶⁸Ge, ⁶⁰Co, ²⁵²Cf
 - Z-axis
 - Guide tube
- LED injection system
- Spallation neutrons generated by cosmic rays
- Energy scale fractional uncertainty: ${\sim}1\%$
- θ_{13} fit treatment: $E_{vis}^{MC} \longrightarrow a' + b' \cdot E_{vis}^{MC} + c' \cdot (E_{vis}^{MC})^2$ where $b' \sim 1$ and $a', c' \sim 0$

Calibration and Energy Scale

- Source deployments: ¹³⁷Cs, ⁶⁸Ge, ⁶⁰Co. ²⁵²Cf
 - Z-axis
 - Guide tube
- LED injection system
- Spallation neutrons generated by cosmic rays
- Energy scale fractional uncertainty: ${\sim}1\%$
- θ_{13} fit treatment: $E_{vis}^{MC} \longrightarrow a' + b' \cdot E_{vis}^{MC} + c' \cdot (E_{vis}^{MC})^2$ where $b' \sim 1$ and $a', c' \sim 0$

Calibration and Energy Scale

- Source deployments: ¹³⁷Cs. ⁶⁸Ge. ⁶⁰Co. ²⁵²Cf
 - Z-axis
 - Guide tube
- LED injection system
- Spallation neutrons generated by cosmic rays
- Energy scale fractional uncertainty: ${\sim}1\%$
- θ_{13} fit treatment: $E_{vis}^{MC} \longrightarrow a' + b' \cdot E_{vis}^{MC} + c' \cdot (E_{vis}^{MC})^2$ where $b' \sim 1$ and $a', c' \sim 0$

Signal and Backgrounds

$\overline{\nu}_{e}$ Signal in Double Chooz

- Look for e^+ followed by neutrons captured by Gd.
 - $E_{
 m n-Gd}\simeq 8$ MeV, $au_{
 m n-Gd}\simeq 30\mu s.$
- Natural γ background from U, Th, and K tops out at ${\sim}3$ MeV ($^{208}{\rm TI}$).
 - Singles rate: 13 Hz.
- Cuts on: E_{prompt}, E_{delayed}, Δt, ΔR, various muon vetoes, light topology
- Backgrounds \sim exclusively from cosmics.

Uncorrelated Background

• Accidentals: precisely measured using off-time windows.

Uncorrelated Background

• Accidentals: precisely measured using off-time windows.

Correlated Backgrounds

 Fast neutrons: spectrum basically flat; measured by tagging low E IV events.

Uncorrelated Background

• Accidentals: precisely measured using off-time windows.

Correlated Backgrounds

- Fast neutrons: spectrum basically flat; measured by tagging low E IV events.
- Stopping muons: also ~flat and measured by tagging low E IV events.

Uncorrelated Background

• Accidentals: precisely measured using off-time windows.

Correlated Backgrounds

- Fast neutrons: spectrum basically flat; measured by tagging low E IV events.
- Stopping muons: also ~flat and measured by tagging low E IV events.
- ⁹Li/⁸He: resembles IBD, larger spectral unc. than other backgrounds; rate and shape measured from time corr. with showering muons.

Double Chooz θ_{13} Fit

Normalization Uncertainties

Source	Uncertainty (%)	Improvement
Reactor flux	1.7	None
Backgrounds	0.8	-50%
Detection eff.	0.6	-40%
Statistics	0.8	-30%
Total	2.1	-20%

This shows the uncertainty relative to the signal prediction. Improvement column shows improvement from previous DC publication.

Reactor Rate Modulation Fit

Fit observed rates for $\sin^2 2\theta_{13}$ and total background rate, B:

 $R^{obs} = B + \left(1 - \sin^2 2\theta_{13} \left\langle \sin^2 (1.267 \Delta m^2 L/E) \right\rangle \right) R^{exp, no osc}$

Reactor Rate Modulation Fit

Fit observed rates for $sin^2 2\theta_{13}$ and total background rate, B:

 $R^{obs} = B + \left(1 - \sin^2 2\theta_{13} \left\langle \sin^2(1.267\Delta m^2 L/E) \right\rangle \right) R^{exp, no osc}$

Valuable features:

- Uses DC's relative simple reactor setup
- Use of background model optional
- Leverage from reactor-off data

Reactor Rate Modulation Results

RRM with background constraint

• $\sin^2 2\theta_{13} = 0.090^{+0.034}_{-0.035}$ (stat+sys)

• $B = 1.56^{+0.18}_{-0.16} \text{ day}^{-1}$

RRM without background constraint

• $\sin^2 2\theta_{13} = 0.060 \pm 0.039 \text{ (stat+sys)}$ • $B = 0.93^{+0.43}_{-0.36} \text{ day}^{-1}$

Keith Crum

Rate+Shape Fit

Double Chooz fit strategy:

- Improves upon rate-based analysis by adding spectrum information
- Constrains backgrounds
- Fits data with specific oscillation shape

$$\chi^2_{\textit{Rate+Shape}} = \sum_{i,\,j}^B \left(N_i^{\textit{data}} - N_i^{\textit{pred}} \right) M_{ij}^{-1} \left(N_j^{\textit{data}} - N_j^{\textit{pred}} \right)^T + ext{nuisance parameters}$$

B = number of energy bins = 40

 $M=\mbox{covariance matrix},$ including spectrum shape uncertainties

 N^{pred} adjusted for value of θ_{13} and nuisance parameters:

 9 Li rate, FN + SM rate, energy scale, Δm^2 , off-off period

Rate+Shape Results

Backgrounds subtracted at best fit rates.

Visible Energy (MeV)

$$\sin^2 2\theta_{13} = 0.090^{+0.032}_{-0.029} \text{ (stat+sys)} \quad \chi^2_{\min}/\text{d.o.f.} = 52.2/40$$

- A distortion between 4 and 8 MeV is visible
- Cross-checks have confirmed:
 - θ_{13} measurement unaffected
 - Unknown Gaussian background disfavored
 - Energy scale near 5 MeV not likely cause (n-¹²C peak)
- RRM fit on different E_{pr} ranges differentiate reactor from background effects

 $\sin^2 2\theta_{13}$ fixed, background fixed to model.

 $\sin^2 2\theta_{13}$ fixed, background model floating.

Fixed $\sin^2 2\theta_{13} = 0.090^{+0.009}_{-0.008}$ (Daya Bay).

- RRM fits in wide energy bins with θ_{13} fixed, flux floating or background floating
- Much more tension when flux constrained
- Excess significant at 3σ level; deficit 1.6σ
- Seen in Daya Bay and RENO too
- New flux calculation points to reactor as cause (arXiv:1407.1281)

Conclusions

- Near detector being commissioned
- First reactor experiment to present distortion
- New *θ*₁₃ results (arxiv:1406.7763):
 - Rate+shape: $\sin^2 2\theta_{13} = 0.090^{+0.032}_{-0.029}$
 - RRM: $\sin^2 2\theta_{13} = 0.090^{+0.034}_{-0.035}$, $B = 1.56^{+0.18}_{-0.16} \text{ day}^{-1}$
 - RRM (no bkgd model): $\sin^2 2\theta_{13} = 0.060 \pm 0.039$, $B = 0.93^{+0.43}_{-0.36} \text{ day}^{-1}$
- Hydrogen-capture analysis underway
- Long-term 1σ error $\lesssim 10\%$

Conclusions

- Near detector being commissioned
- First reactor experiment to present distortion
- New *θ*₁₃ results (arxiv:1406.7763):
 - Rate+shape: $\sin^2 2\theta_{13} = 0.090^{+0.032}_{-0.029}$
 - RRM: $\sin^2 2\theta_{13} = 0.090^{+0.034}_{-0.035}$, $B = 1.56^{+0.18}_{-0.16} \text{ day}^{-1}$
 - RRM (no bkgd model): $\sin^2 2\theta_{13} = 0.060 \pm 0.039$, $B = 0.93^{+0.43}_{-0.36} \text{ day}^{-1}$
- Hydrogen-capture analysis underway
- Long-term 1σ error $\lesssim 10\%$

Backups

Data/MC Comparison

Total live-time: 467.9 days

Data/MC Comparison

Signal Prediction

Far detector-only analyses rely on $\overline{\nu}_e$ rate prediction:

$$N = \frac{\epsilon N_{p}}{4\pi} \sum_{R=1,2} \frac{1}{L_{R}^{2}} \frac{P_{th}^{R}}{\langle E_{f} \rangle_{R}} \langle \sigma_{f} \rangle_{R}$$

N_{ρ} = number of protons in fiducial volume	
L_R = distance between reactor and far detector	
P_{th}^R = thermal power of reactor (time-dependent)
$\langle E_f \rangle_R =$ average energy per fission (time-dependen	t)
$\langle \sigma_f angle_R =$ average cross section per fission (time-deperturbed) chored" to Bugey4 measurement at L = 1	endent), "an- 15 m

Reactor-off background measurements

Analyzed 7.5 days of data with both reactors off.

Phys. Rev. D. 87 (2013)

- Unique Double Chooz capability.
- Rate consistent with predictions:
 - Gd selection: 1.0 \pm 0.4 day⁻¹ with residual $\bar{\nu}_e$ subtracted.

(expected 2.0 \pm 0.6 day⁻¹)

- H selection: $11.3 \pm 3.4 \text{ day}^{-1}$ with residual $\bar{\nu}_e$ and accidentals subtracted. (expected $5.8 \pm 1.3 \text{ day}^{-1}$)
- New constraint for oscillation fits.

- RRM fits in wide energy bins with θ_{13} fixed, flux floating (left) or background floating (right).
- Much more tension when flux constrained (right)
- Excess significant at 3σ level; deficit 1.6σ
- New flux calculation points to reactor as cause (arXiv:1407.1281).

Systematic Errors Relative to Distortion

Outer Veto Tracking

- In events with upper and lower OV hits, average muon track resolution improves by factor of 3 (\sim 5 cm resolution)
- OV tracking used as input to ⁹Li studies
 - We now remove \sim 50% of ⁹Li shown in these analyses
 - ⁹Li prompt spectrum now measured directly from data

Visualization of support feet for buffer in IV region:

