

Searches for Top Squark Pairs at the LHC Verena I. Martinez Outschoorn University of Illinois Urbana-Champaign

Art courtesy of Xavier Cortada (with the participation of physicist Pete Markowitz)

U. of Chicago HEP Seminar, November 10th, 2014

Outline

Why search for top squarks (stops) ? Top squark production and decay Inclusive search in 1& + jets mode in CMS Limitations Prospects and conclusions SUSY

Hierarchy Problem & Naturalness

$$\Delta m_H^2 \sim \left| \left| y_t \right|^2 \left[-\Lambda_{UV}^2 + \frac{3}{2} m_t^2 \log \left(\frac{\Lambda_{UV}^2}{m_t^2} \right) \right]$$

Enormous radiative corrections to m_{higgs} in SM: $\Delta m^2 \sim \Lambda^2_{UV}$

Hierarchy Problem & Naturalness

Stop Production & Decay

Top Squark Production at the LHC

Top Squark Production at the LHC

 $\Delta m > m_{top}$ on-shell top

$$\tilde{t} \rightarrow t \tilde{\chi}_1^0 \rightarrow b W \tilde{\chi}_1^0$$

 $\Delta m < m_{top}$ off-shell top $\Delta m < m_W$ off-shell W

$$\tilde{t} \rightarrow t \tilde{\chi}_1^0 \rightarrow b W^{(*)} \tilde{\chi}_1^0$$

Alternative Top Squark Decays

11

$$\Delta m \equiv m_{\tilde{t}} - m_{\tilde{\chi}^0}$$

 $m_{\tilde{t}}$

Search in 12 + jets mode in CMS

Top Squark Search

Signal is tt with extra missing energy

Top Squark Signature

Top Squark Signature

Eur. Phys. J. C 73 (2013) 2677 hep-ex/1308.1586

Kinematics: Transverse Mass

$$M_T^W(\ell,\nu)^2 = (E_T(\ell) + E_T(\nu))^2 - (\vec{p_T}(\ell) + \vec{p_T}(\nu))^2$$

$$\rightarrow 2E_T(\ell)E_T(\nu)(1-\cos(\Delta\phi))$$
Met

Also other backgrounds: W+jets, single top, rare processes (e.g. ttZ)

Kinematics: Transverse Mass

$$M_T^W(\ell,\nu)^2 = (E_T(\ell) + E_T(\nu))^2 - (\vec{p_T}(\ell) + \vec{p_T}(\nu))^2$$

$$\rightarrow 2E_T(\ell)E_T(\nu)(1-\cos(\Delta\phi))$$

The Transverse Mass

The SM at High Transverse Mass

Use kinematical information in addition to E_T^{miss} and M_T to reduce tt

Top background

Use kinematical information in addition to E_T^{miss} and M_T to reduce tt

Top background

 $M_{T2}^{W} \text{ is minimum mother particle mass consistent with kinematic constraints}$ $M_{T2}^{W} = \min \left\{ m_y \text{ consistent with: } \begin{bmatrix} \vec{p}_1^T + \vec{p}_2^T = \vec{E}_T^{\text{miss}}, \ p_1^2 = 0, \ (p_1 + p_\ell)^2 = p_2^2 = M_W^2, \\ (p_1 + p_\ell + p_{b_1})^2 = (p_2 + p_{b_2})^2 = m_y^2 \end{bmatrix} \right\}$ Gallichio et al. hep-ph/1203.4813

Use kinematical information in addition to E_T^{miss} and M_T to reduce tt

 $M_{T2}^{W} \text{ is minimum mother particle mass consistent with kinematic constraints}$ $M_{T2}^{W} = \min \left\{ m_y \text{ consistent with: } \begin{bmatrix} \vec{p}_1^T + \vec{p}_2^T = \vec{E}_T^{\text{miss}}, \ p_1^2 = 0, \ (p_1 + p_\ell)^2 = p_2^2 = M_W^2, \\ (p_1 + p_\ell + p_{b_1})^2 = (p_2 + p_{b_2})^2 = m_y^2 \end{bmatrix} \right\}$ Gallichio et al. hep-ph/1203.4813

Use kinematical information in addition to E_T^{miss} and M_T to reduce tt

Signal has hadronically decaying top while $tt \rightarrow l^+l^-$ does not

Construct 3-jet hadronic top χ^2 hypothesis

Use kinematical information in addition to E_T^{miss} and M_T to reduce tt

Signal has hadronically decaying top while $tt \rightarrow l^+l^-$ does not

12 Top Squark Selection

Second Lepton Rejection

Veto on events with an Main tau branching fractions isolated track **3-charged particles** ('3-prong') ~ 15% W^+ P_2 ν 1-charged particle **1-charged particle** $\hat{\boldsymbol{\varrho}}, \pi/\mathbf{K}$ ('1-prong') ('1-prong') e or $\mu \sim 32\%$ hadron ~ 53% **Isolated track** catches leptons or hadrons from τ -decay

 $p_T > 10 \text{ GeV}$ If e or $\mu p_T > 5 \text{ GeV}$ and loosen isolation Veto hadronic τ candidates with p_T> 20 GeV Catches multiprong decays

Kinematical Quantities

At preselection

Signal Selection

Main analysis combines several variables in BDTs → signal regions defined by cuts on BDT output

Cross checked with cut-based analysis → less sensitivity to model details

Do both in parallel \rightarrow 18 BDT and 16 cut-based signal regions!

Signal Region Selection

Signal Region Selection

tã⁰ Mode

More BDTs to target $b\chi^{\pm}$ mode

42

Backgrounds from Monte Carlo → Calibrate/correct with "control regions"

Backgrounds from Monte Carlo → Calibrate/correct with "control regions"

Backgrounds from Monte Carlo → Calibrate/correct with "control regions"

Backgrounds from Monte Carlo → Calibrate/correct with "control regions"

Issue with E_T^{miss} resolution affecting M_T

 \rightarrow measured in W+jets, corrected via scale factor 1.2±0.3

→ transfer to tt→ℓ+jets not straightforward

Single Lepton Backgrounds

Two contributions to high M_T tail

46

Signal and Background Expectations

Signal and Background Expectations

The Results

49

What does this search tell us?

Set limits using results from the signal region with the best expected sensitivity

Results probe $m(\tilde{t}) \leq 650$ GeV for $m(\tilde{\chi}^0) \leq 225$ GeV Sensitive to the $\Delta M < m_{top}$ and $m_{stop} < m_{top}$ regions

Multivariate vs. Cut Based

Limits from cut-based analysis a little worse

12 + 02 Comparison of Stop Results

All jets search extends sensitivity to higher top squark mass

12 + 02 Combination of Stop Results

Results sensitive to top squarks to m_{stop} ~ 750 GeV

12 Decay Mode Comparison

12 Interpretation: Branching Fraction

For $m(\tilde{\chi}^{\pm}) \sim m(\tilde{\chi}^{0})$, strong dependence on BF(stop $\rightarrow t + \tilde{\chi}^{0}$)

12 + 02 Combination: Branching Fraction

Combination with low jet multiplicity fully hadronic search is sensitive to a wider range of possible branching fractions

Summary of Stop Mass Limits

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

Similar results from ATLAS

Limitations

The Gaps

Results probe m_{stop} ~100 – 650 GeV BUT m_{stop} ≤ 650 GeV is not conclusively ruled out because of gaps!

The Gap around m_{top}

Kinematics around m_{top}

Sensitivity around m_{top}

 \rightarrow low $M_{\rm T}$ acceptance

Recoiling Signals

Design event selection for stops recoiling against ISR jets
→ increase LSP momentum
→ gain sensitivity

Revisiting the Gap around mtop

Stop in Gluino Cascade Decays

If the lightest stop is hiding in the top, could see it in the decay of the gluino 19.3 fb⁻¹ $\sqrt{s} = 8 \text{ TeV}$ CMS 10² $m_{\widetilde{\chi}^0} \, [\text{GeV}]$ 95% CL upper limits on cross section [fb] $pp \rightarrow \widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow \widetilde{t}\widetilde{t} \rightarrow t\overline{t}\widetilde{\chi}_1^0, m_{\widetilde{g}}^0 = 1 \text{ TeV}$ NLO+NLL exclusion 650 obs. \pm 1 σ theor. ($\Delta \phi$) P_2 600 exp. $\pm 1\sigma$ exp. $(\Delta\phi)$ $\tilde{\chi}_1^0$ 550 SUS-13-007 $\tilde{\chi}_1^0$ 500 10 m_{stop} = $m_{ISP} + m_{top}$ 450 400 350 300 400 450 500 550 600 650 700 750 800 m₊[GeV]

Hole closed for 100% BF if m_{gluino} below ~1.3 TeV

Stop₁ in **Stop**₂ **Cascade Decays**

If the lightest stop is hiding in the top, could see it in the decay of a heavier stop

Stop₂ Signature

Interpretation

Set limits combining results from searches with multiple b-jets and multiple leptons

Hole closed for m_{stop2} below ~ 550-600 GeV

Revisiting the Gap around m_{top}

Stops hiding in the Top

Consider the impact of a light stop on the measured tt cross section

Stops hiding in the Top

 $\Delta \phi(\mathbf{l}_1, \mathbf{l}_2)$ in tt $\rightarrow \ell^+ \ell^-$ affected by presence of stops (spin 0)

ATLAS-CONF-2014-056

Stops hiding in the Top

$\Delta \phi(l_1, l_2)$ in tt $\rightarrow l^+l^-$ affected by presence of stops (spin 0) Measurement can be used to constrain stops with $m_{stop} \sim m_t$

Prospects & Conclusions

Summary of Run1 Stop Mass Limits

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS 74

Summary of Run1 Stop Mass Limits

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS 75

Summary of ATLAS Results

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

Extending to Higher Masses

Top Squarks at LHC Run 2

LHC Run2 (~2015-2021) expect ~300 fb⁻¹ of data at $\sqrt{s} = 13-14$ TeV

Expect *discovery* reach up to m_{stop}~750-950 GeV

Analysis Updates

Summary of Searches and Outlook

Conclusion

Light stops are a powerful signature of new physics to search for at the LHC

Searches for stops at the LHC are the first to explore significant regions of interesting parameter space No signs of stops, but understanding of SM backgrounds is the key to any future discovery

There are loopholes, even for light stops, some are currently being addressed \rightarrow need to cover the gaps in sensitivity

The next years are going to be crucial to discover light stops or to set severe constraints on Natural SUSY → the higher energy data will extend the sensitivity to close to 1 TeV

Art courtesy of Xavier Cortada (with the participation of physicist Pete Markowitz)

Thank you

