Precision Reactor $\bar{\nu}_e$ Spectrum Measurements: Recent Results and PROSPECTs

November 24, 2014

Bryce Littlejohn
Illinois Institute of Technology

Daya Bay Antineutrino Spectrum

PROSPECT Collaboration at HFIR
Outline

- Intro: Reactor $\bar{\nu}_e$ Flux and Spectrum Predictions
- Reactor Anomaly and recent flux/spectrum measurements
- Future measurement of the $\bar{\nu}_e$ spectrum at PROSPECT
- Historical/current/future context for PROSPECT
Outline

• Intro: Reactor $\bar{\nu}_e$ Flux and Spectrum Predictions
• Reactor Anomaly and recent flux/spectrum measurements
• Future measurement of the $\bar{\nu}_e$ spectrum at PROSPECT
• Historical/current/future context for PROSPECT
Reactor Neutrino History

• Reactor $\bar{\nu}_e$: a history of discovery
 Many experiments, differing baselines

1950s: First neutrino observation

1970s-80s-90s:
 Reactor flux,
 Cross-section measurements

1970s-80s-90s:
 Reactor flux,
 Cross-section measurements

2000s: $\bar{\nu}_e$ disappearance,
 ν_e oscillation measurements

2010s: θ_{13}, precision oscillation measurements
Reactor Neutrino Discovery

• How are these discoveries made?
 • Comparing observed reactor neutrinos at different sites
 • Comparing observed reactor neutrinos to predictions based on some model of how nuclear reactors work

KamLAND, PRL 100 (2008)

Daya Bay, PRL 108 (2012)

2000s: $\bar{\nu}_e$ disappearance, $\bar{\nu}_e$ oscillation measurements

2010s: θ_{13}, precision oscillation measurements
Reactor Antineutrino Production

- Beta branches produced when fission isotopes fission
 - Low-enriched (LEU): Many fission isotopes
 - Highly-enriched (HEU): U-235 fission only
- Overall fission rate described largely by reactor thermal power

LEU Fission Fragment Contributors

Vogel, et. al
Rev. Mod. Phys (2001)
Reactor Antineutrino Production

- Reactor $\bar{\nu}e$: produced in decay of product beta branches

- Each isotope: different branches, so different neutrino energies (slightly)

\[F_i = \frac{W_{th} f_i}{\sum_k f_k E_k} \]
Reactor Antineutrino Detection

- Detect inverse beta decay with liquid or solid scintillator, PMTs
- IBD e+ is direct proxy for antineutrino energy

Example: Daya Bay Detector

Daya Bay Monte Carlo Data

Prompt e^+ spectrum

~30us capture time

Delayed n-cap spectrum

nH

nGd
Two main methods:

Ab Initio approach:
- Calculate spectrum branch-by-branch using beta branch databases: endpoints, decay schemes
- **Problem:** many rare beta branches with little information; infer these additions

Conversion approach
- Measure beta spectra directly
- Convert to $\bar{\nu}_e$ using ‘virtual beta branches’
- **Problem:** ‘Virtual’ spectra not well-defined: what forbiddenness, charge, etc. should they have?

Devised in 50’s, each method has lost and gained favor over the years

King and Perkins, Phys. Rev. 113 (1958)

Example: Ce-144 Decay Scheme

Predicting $S_i(E)$, Neutrinos Per Fission

- **Early 80s:** ILL ν_e data fits newest *ab initio* spectra well

 Davis, Vogel, *et al.*, PRC 24 (1979)

- **1980s:** New reactor beta spectra: measurements — conversion now provides lower systematics

- **1990s:** Bugey measurements fit converted spectrum well

- **1980s-2000s:** Predicted, measured fluxes agree

Distance to reactor (m)

Adapted From PRD 83 (2011)
Recent History: Problems Emerge

- **2010s:** Re-calculation of conversion for θ_{13} measurements
 - Start with ab initio approach
 - Subtract this from ILL beta spectra
 - Use conversion procedure on remaining beta spectrum: \sim10%
 - OR Huber: virtual branches only

- **Change in flux/spectrum!**
 - Flux increase from:
 - Conversion (\sim3%)
 - X-section (1%)
 - Non-equilibrium isotopes (1%)
Outline

• Intro: Reactor $\overline{\nu}_e$ Flux and Spectrum Predictions
• Reactor Anomaly and recent flux/spectrum measurements
• Future measurement of the $\overline{\nu}_e$ spectrum at PROSPECT
• Historical/current/future context for PROSPECT
Do we have a ‘reactor antineutrino anomaly?’

- “No: the previous experiments could have been biased to report flux measurements that agreed with existing predictions of the time.”
- “Yes: but probably attributable to uncertainties in the beta-to-\(\nu_e\) conversion.”
- “Yes: the deficit could result from short-baseline sterile neutrino oscillations.”
• Do we have a ‘reactor antineutrino anomaly?’

 • “No: the previous experiments could have been biased to report flux measurements that agreed with existing predictions of the time.”

 • “Yes: but probably attributable to uncertainties in the beta-to-ν_e conversion.”

 • “Yes: the deficit could result from short-baseline sterile neutrino oscillations.”

We need more data!!
Do we have a ‘reactor antineutrino anomaly?’

“No: the previous experiments could have been biased to report flux measurements that agreed with existing predictions of the time”

Daya Bay also sees the reactor flux deficit

• 5% deficit relative to 2011 Huber/Mueller flux prediction

• Blind analysis: No reactor power data available until analysis is totally fixed

C. Zhang (Daya Bay)
Neutrino 2014
Reactor Anomaly Explanations

• Do we have a ‘reactor antineutrino anomaly’?
 • “Yes: it’s probably attributable to problems in the beta-to-ν_e conversion”

• Spectra from θ_{13} experiments disagree with predictions
 • “If measured spectrum doesn’t match, why should measured flux?”

We need more data!!

Double Chooz, JHEP 10 (2014)

W. Zhong (Daya Bay) ICHEP 2014
Reactor Anomaly Explanations

• Do we have a ‘reactor antineutrino anomaly?’
 • “Yes: it’s probably attributable to problems in the beta-to-ν_e conversion”

• New \textit{ab initio} shape seems to match RENO/DC data quite well

• But not the flux…?

• Not enough data to constrain this situation further!

We need more data!!
• Do we have a ‘reactor antineutrino anomaly?’
 • “Yes: the deficit could result from short-baseline sterile neutrino oscillations”
• Consistent with existing nonzero hints for sterile neutrinos
 • LSND, MiniBooNE, Gallium
 • However, tension with null ν_μ disappearance measurements…

We need more data!!
Major implications for Standard Model if ν_s DO actually exist

Even if they do not, ability to constrain reactor $\bar{\nu}_e$ models

- Valuable for reactor oscillation experiments
- Inputs to reactor modeling
- ‘Reactor spectroscopy:’ probe individual branches in reactor spectrum
- Implications for non-proliferation

Spectrum of ν_e at $L \sim 53$km

• Intro: Reactor $\overline{\nu}_e$ Flux and Spectrum Predictions
• Reactor Anomaly and recent flux/spectrum measurements
• Future measurement of the $\overline{\nu}_e$ spectrum at PROSPECT
• Historical/current/future context for PROSPECT
Precise Reactor Spectrum Measurements

- A lot yet to be learned from/about reactor $\bar{\nu}_e$ spectra
- In particular we could really use:
 - A high energy-resolution detector for precisely measuring absolute spectrum
 - A high position-resolution detector for comparing spectra between baselines
- Enter PROSPECT: the Precision Reactor Oscillation and SPECTrum Experiment
PROSPECT Collaboration

- 58 collaborators
- 11 universities
- 5 national laboratories

Reactor sites:
- Brookhaven National Laboratory (INL)
- University of Chicago
- Drexel University
- Idaho National Laboratory (INL)
- Illinois Institute of Technology
- Lawrence Livermore National Laboratory (ORNL)
- Le Moyne College
- National Institute of Standards and Technology (NIST)
- Oak Ridge National Laboratory (ORNL)
- Temple University
- University of Tennessee
- Virginia Tech University
- University of Waterloo
- University of Wisconsin
- College of William and Mary
- Yale University
High-Flux Isotope Reactor at ORNL

- Compact 85MW Core
- HEU: constant U-235 $\bar{\nu}_e$ spectrum
- 42% reactor up-time (5 yearly cycles)
- Available detector location at 6+ m
- Have surveyed reactor backgrounds
• High Flux Isotope Reactor: ORNL
• Extensive passive shielding
• Segmented liquid scintillator target region: ~3 tons for near detector (Phase I)
• Moveable: 7-11 m baselines
PROSPECT Location at HFIR

Wide door to grade level: bring detector subsystems in here

Detector mockup in true deployed position

Gamma background survey detectors
IBD Detection in Target

- Inverse beta interactions in Li-loaded PSD liquid scintillator
- 10 x 14 optically decoupled cells: ~15cm x 15cm x 100cm each
- Specularly reflecting cell walls quickly guide light to PMTs
- System can meet position/energy resolution requirements

Prompt signal: 1-10 MeV positron from inverse beta decay (IBD)

Delay signal: ~0.5 MeV signal from neutron capture on ^6Li
Detector Target R&D

- **Reflecting segment system**
 - Fabrication method identified
 - Testing differing materials

- **Li-loaded Scintillator**
 - Formulation methods identified
 - Numerous candidates produce desired scintillation light yield, timing

![Short Mockup Segment](image1)

![Specular Panel](image2)

Liquid Scintillator Development

- ^6Li-doped LS with pulse shape discrimination (PSD) is key component of PROSPECT:
 - High and uniform neutron capture efficiency in compact detector
 - Particle ID capability for neutron capture and fast neutron recoils

- Commercial PSD LS + collaboration ^6Li chemistry

- Multiple approaches are making excellent progress:
 - Collaboration PSD LS + ^6Li chemistry
 - EJ-309 doped with BNL ^6Li chemistry
 - PSD enhanced LAB-LS doped with BNL ^6Li chemistry
 - Ultima-Gold doped with NIST ^6Li micro-emulsion
IBD Detector Response: Simulation

- Must reconstruct e^+ energy with high resolution and low bias
- Model response with lab-benchmarked simulations
 - Energy deposition outside LS
 - Normalization and linearity of light production, collection, etc. with energy
 - Light yield variations along cell
 - Variations between cells

PROSPECT detector simulations

Optics simulations, Relative cell response simulations underway
IBD Detector Response: Simulation

- Must reconstruct e^+ energy with high resolution and low bias
- Model response with lab-benchmarked simulations
 - Energy deposition outside LS
 - Normalization and linearity of light production, collection, etc. with energy
 - Light yield variations along cell
 - Variations between cells

PROSPECT detector simulations
IBD Detector Response: Simulation

- Must reconstruct e^+ energy with high resolution and low bias
- Model response with lab-benchmarked simulations
 - Energy deposition outside LS
 - Normalization and linearity of light production, collection, etc. with energy
 - Light yield variations along cell
 - Variations between cells

PROSPECT detector simulations

Collection Efficiency

Position Along Cell (cm)

'Reconstructed' Energy (MeV)
IBD Detector Response: Calibration

- Must reconstruct e^+ energy with high resolution and low bias
- Characterize detector response with calibration sources
 - Fiber-delivered light sources
 - Guide tube-delivered gamma, neutron sources
 - Background sources: muons, radioactive backgrounds, spallation products

End view

Rigid rods hold reflecting walls in place

Center hole in rod for fibers, guide tubes

3D-printed rod prototypes
IBD Detection Backgrounds

- Have a highly sensitive detector operating at the surface in the direct vicinity of an operating nuclear reactor
- Major design challenge: background reduction
- Aiming for S:B ratio of 1:1

Signal, Main Backgrounds

- **Inverse Beta Decay**
 - γ-like prompt, n-like delay
 - Fast Neutron
 - n-like prompt, n-like delay
 - Accidentals
 - γ-like prompt, γ-like delay

Prompt signal: 1-10 MeV positron from inverse beta decay (IBD)

Delay signal: ~0.5 MeV signal from neutron capture on 6Li
Background Surveys

Neutron Rate/Spectrum

- **2” Stilbene Organic Crystal**
 - "REM Ball"
 - Moderated 3He tube measured absolute thermal neutron flux at all sites
- **FaNS-1 Capture-gated Neutron Spectrometer**
 - Plastic scint. & 3He tubes measured spectrum and absolute flux at HFIR

γ-ray Rate/Spectrum

- **Moderate Resolution:**
 - Same NaI(Tl) detectors used at all sites to provide relative comparison
- **High Resolution:**
 - Different HPGe and LaBr spectrometers used to identify background sources

Muon Rate/Distribution

- Muon telescope assembled from 3 plastic scint. panels gives flux and angular distribution
- Telescope was tilted to measure angular distribution
- Different panel combinations defined angular acceptance

From T. Classen
Neutron Rate/Spectrum

FaNS-1 Capture-gated Neutron Spectrometer

- Moderated 3He tube measured absolute thermal neutron flux at all sites.
- "REM Ball" Stilbene Organic Crystal Plastic scint & 3He tubes measured spectrum and absolute flux at HFIR.

Relative fast neutron flux at all sites

<table>
<thead>
<tr>
<th>Location</th>
<th>Rate 4 – 14.5 MeV (mHz)</th>
<th>Rate 10-14.5 MeV (mHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATR Near</td>
<td>4.7 ± 0.3</td>
<td>1.0 ± 0.1</td>
</tr>
<tr>
<td>HFIR Near</td>
<td>2.2 ± 0.2</td>
<td>0.3 ± 0.1</td>
</tr>
<tr>
<td>NIST Near</td>
<td>2.8 ± 0.2</td>
<td>0.8 ± 0.1</td>
</tr>
<tr>
<td>ATR Far</td>
<td>1.8 ± 0.2</td>
<td>0.4 ± 0.1</td>
</tr>
<tr>
<td>HFIR Far</td>
<td>3.5 ± 0.2</td>
<td>0.6 ± 0.1</td>
</tr>
<tr>
<td>NIST Far</td>
<td>2.8 ± 0.2</td>
<td>0.8 ± 0.1</td>
</tr>
</tbody>
</table>

Muon Rate/Distribution

Muon telescope assembled from 3 plastic scint. panels gives flux and angular distribution. Telescope was tilted to measure angular distribution.

Fast Neutron Rates

Gamma Spectra (NIST)

Paper on results in preparation
Background Shielding

- Shielding package designed based on background surveys, available space constraints
- Local lead shielding wall
 - Addresses ‘hot’ gamma regions
- Shielding encompassing entire detector
 - Li-Poly, B-Poly (neutrons), Lead (gammas)
- Investigating benefits of a muon veto system
- Backgrounds and effects of shielding have been simulated.
Background Rejection, Signal Selection

• Reduce backgrounds: Li-capture and pulse-shape discrimination

![Graph showing pulse shapes and PSD parameter](image)

Signal, Main Backgrounds

- Inverse Beta Decay
 - γ-like prompt, n-like delay
- Fast Neutron
 - n-like prompt, n-like delay
- Accidentals
 - γ-like prompt, γ-like delay

$PSD = \frac{Q_{tail}}{Q_{full}}$

Fisher et al. NIMA 646 (2011)
PROSPECT: Scaling Up

- Measure n bgks
- Run DAQ, Remote data-taking
- See LS PSD
- See n-Li + PSD
- Demonstrate shielded background rates
- Demonstrate full-cell PSD, light yield
- Deploy final design concepts
- Observe relative segment responses
- See antineutrinos?
- **Deployment complete/imminent**

PROSPECT 0.1
- Aug. 2014
- See antineutrinos?
- **Physics!**

PROSPECT 2
- Dec. 2014
- **PROSPECT 20**
- Jan. 2015
- **PROSPECT 200**
- **PROSPECT 2ton**

Approximate mass kg
• Measure energy spectrum separately in each segment

• Look for unexpected L/E distortion: oscillations

• Mass splitting wouldn’t match observed three-neutrino splittings: fourth (sterile) neutrino

\[P(\nu_a \rightarrow \nu_b) = \sin^2 2\theta \sin^2 \left(\frac{1.27 \Delta m^2 (eV^2)}{E_\nu (GeV)} \frac{L (km)}{E_\nu (GeV)} \right) \]

One 3x1x1 m³ detector, 1m³ 20 MW HEU core, 4m closest distance

Unoscillated

Oscillated:
\[\Delta m^2 = 1.8 \text{ eV}^2 \]
\[\sin^2 2\theta = 0.5 \]

30% Efficiency
15cm position resolution
10%/\text{sqrt(E)} Energy Resolution
PROSPECT Physics: Oscillations

- Excellent oscillation discovery potential at PROSPECT
 - If new sterile neutrino is where global fits suggest, it’s very likely we’ll see it!
 - No reliance on absolute spectral shape or normalization: pure relative measurement
 - Good coverage with a single detector and one/three calendar years of data-taking

Simulated PROSPECT data, binned in L/E; Stat err. only

![Graph showing oscillated/unoscillated ratio with baseline/energy on the x-axis and oscillated/unoscillated ratio on the y-axis.](image)

Inputs:
- 3+1 Oscillations
- $\Delta m^2 = 2.0 \text{ eV}^2$
- $\sin^2 2\theta_{13} = 0.1$

Detection Efficiency: 30%

1:1 Signal:Background

Accessibility:
- 20cm/10% position/energy resolution

Sensitivity, Minimal Absolute Energy Spectrum Information
- PROSPECT@HFIR, Phase I, 1 calendar year, 95% CL
- PROSPECT@HFIR, Phase I, 3 calendar years, 95% CL
- Reactor Anomaly, 95% CL
- All ν, Disappearance Exps, 95% CL
• **What is the correct model?**
 - Have data points for conventional fuel ($^{235}\text{U}, ^{238}\text{U}, ^{239}\text{Pu}, ^{241}\text{Pu}$)
 - What about HEU fuel (^{235}U only)? Provides additional model constraint

• **Benefits of HFIR:**
 - 1 core versus many cores (Daya Bay, RENO)
 - Easier to model, isolate features in 1 isotope’s beta branches?

• **Implications for reactor monitoring:**
 - Example: what if 5MeV bump isn’t present for HEU fuel?
 - In that case ‘bump’ size would be a proxy for ^{239}Pu concentration in core!
PROSPECT Physics: Absolute Spectrum

• How much fine structure exists in reactor spectrum?
 • Ab initio calculations suggest significant fine structure from endpoints of prominent beta branches

• PROSPECT can provide highest-ever energy resolution on the spectrum
 • Goal resolution: 4-5%
 • Thus, best measurement of this fine structure
 • Provide constraints on yields, endpoints of various branches (reactor spectroscopy)?
 • Provide input for future high-resolution reactor experiments (JUNO)?

HEU, 4.5% Energy Resolution

HEU Fuel
• Intro: Reactor $\overline{\nu}_e$ Flux and Spectrum Predictions
• Reactor Anomaly and recent flux/spectrum measurements
• Future measurement of the $\overline{\nu}_e$ spectrum at PROSPECT
• Historical/current/future context for PROSPECT
Historical Context

- A similar experimental setup in the past: Bugey-3
 - Segmented short-baseline LiLS detector

- PROSPECT Pros:
 - Smaller reactor core, closer to core: better for SBL oscillation search
 - Stable scintillator: Bugey’s degraded after a few months in near detector!
 - Smaller target dead volume: ~2% versus >15% for Bugey
 - Aim for better light yield, PSD

- PROSPECT Con: No Overburden
 - 14+ mwe (Bugey-3), <10 mwe (PROSPECT)
 - Bugey had 25:1 S:B
US Context

- **NuLat**: Another effort to measure SBL reactor neutrinos in US
- Based on LENS optical lattice concept
- 2.5” B-loaded solid scintillator cubes, stacked together into lattice
- Observed on all sides by 1350 PMTs
- Test at 20MW NIST reactor, Data deployment at reactor aboard US Navy Ship
- Design, simulation and sensitivity studies underway currently
- Also proposed: coherent scattering at reactors
Many experiments: Russian, European, Asian Efforts

Key physics considerations (besides stats)
- Oscillation: Baseline proximity, range, resolution
- Spectrum: Energy resolution

PROSPECT: Relatively unique in designing toward both goals

My (biased) overview of global efforts

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Us</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROSPECT</td>
<td>Li</td>
<td>Yes</td>
<td>Yes</td>
<td>7-11+</td>
<td>HEU</td>
<td>185</td>
</tr>
<tr>
<td>Nucifer</td>
<td>Gd</td>
<td>No</td>
<td>Yes</td>
<td>7</td>
<td>HEU</td>
<td>56</td>
</tr>
<tr>
<td>EU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEREO</td>
<td>Gd</td>
<td>Yes</td>
<td>Yes</td>
<td>9-11</td>
<td>HEU</td>
<td>100</td>
</tr>
<tr>
<td>SoLid</td>
<td>Li</td>
<td>Yes</td>
<td>No</td>
<td>6-8</td>
<td>HEU</td>
<td>155</td>
</tr>
<tr>
<td>Russia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DANSS</td>
<td>Gd</td>
<td>Yes</td>
<td>No</td>
<td>9.7-12</td>
<td>LEU</td>
<td>2700</td>
</tr>
<tr>
<td>Neutrino4</td>
<td>Gd</td>
<td>Yes</td>
<td>Yes</td>
<td>6-12</td>
<td>HEU</td>
<td>150</td>
</tr>
<tr>
<td>Asia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hanaro</td>
<td>Li/Gd</td>
<td>No</td>
<td>Yes</td>
<td>6-??m</td>
<td>Both</td>
<td>30</td>
</tr>
</tbody>
</table>
Looking to Future

- Eventual PROSPECT Goal: Near and far detector (Phase II)
 - 4-10x larger far detector installed after near detector running
 - Provides broad, highly sensitive oscillation search
 - Far detector can provide highly-fiducialized, high-resolution spectrum

HFIR, Near and Far detectors

Phase I and Phase II sensitivities

<table>
<thead>
<tr>
<th>Sensitivity, Minimal Absolute Energy Spectrum Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROSPECT@HFIR, Phase I, 1 calendar year, 95% CL</td>
</tr>
<tr>
<td>PROSPECT@HFIR, Phase I, 3 calendar years, 95% CL</td>
</tr>
<tr>
<td>PROSPECT@HFIR, Phase II, 3 calendar years, 95% CL</td>
</tr>
<tr>
<td>Reactor Anomaly, 95% CL</td>
</tr>
<tr>
<td>All ν, Disappearance Exps, 95% CL</td>
</tr>
</tbody>
</table>
Summary

• Much has been learned about the absolute reactor nuebar flux and spectrum in the past 2-3 years

• More data is needed to address persisting questions

• PROSPECT can provide valuable new data by measuring HEU reactor $\bar{\nu}_e$ at short baselines
 • High position resolution allows a precise relative spectral measurement for testing the sterile neutrino solution to the reactor anomaly
 • High energy resolution allows a precise absolute spectral measurement for providing new constraints on reactor models
 • Valuable conclusions can be drawn with 1 calendar year of data

• R&D and prototype deployments at HFIR are well underway
END