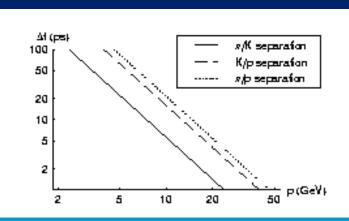
Fermilab / U. Chicago / Argonne Collaborative Initiative on Ultra Fast Timing Detectors

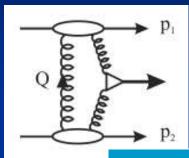
Erik Ramberg Fermilab 27 November, 2007

With:

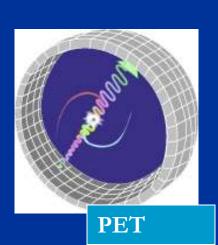
(ANL) Karen Byrum, Gary Drake, Bob Wagner


(UC) Henry Frisch, Harold Sanders, Fukun Tang

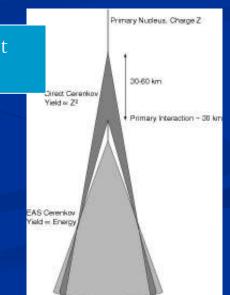
(FNAL) Mike Albrow, Anatoly Ronzhin


OUTLINE

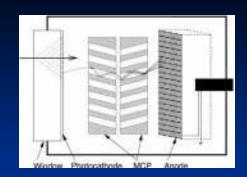
- Motivation & Synergies in fast timing R&D
- MCP Best Fast Timing Measurements
- U. Chicago Engineering
- Argonne Engineering/Laser Test Stand
- Fermilab Meson Test Beam Facility
- Work on SiPM's


Applications in Particle Physics, Astrophysics, PET, OTHER

Particle ID – LHC upgrades, ILC, Flavor Physics



LHC – Forward Proton Tagging



Cosmic rays - Direct Cerenkov radiation

Fast Timing Collaboration

Engineers: J.Anderson ¹, G.Drake ¹, J.F. Genat ⁴, H.Sanders ⁶, F.Tang ⁶, L.Zhou ⁶

Physicists: K.Byrum ¹, H.Frisch ⁶, P. Le Du ⁴, B.Moses ³, E.Ramberg ², C.Royon ⁴,

J. Va'Vra ⁵, R. Wagner ¹

Radiologists: C.Chen ⁷, C.Kao ⁷, Q.Xie ⁷

Students: O.Biris ⁷, C.Ertley ^{1,6}, D. Herbst ⁶, J.Lin ⁷, S. Wilbur ⁶, D. Yu ⁶

Argonne National Laboratory ¹, Fermi National Laboratory ², Lawrence Berkeley Laboratory ³, Saclay Institute, France ⁴, Stanford Laboratory Accelerator Facility ⁵, University of Chicago Enrico Fermi Institute ⁶, University of Chicago, Radiology Department ⁷

Goal: Development of Large-Area time-of-arrival systems

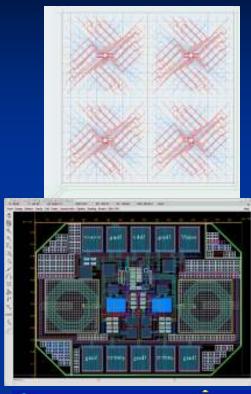
HEP $\sigma \sim 1 ps$ PET $\sigma \sim 30 ps$

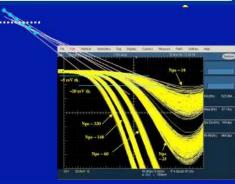
Includes:

- ➤ 3-D modeling of photo-optical devices
- Laser Facility to characterize/compare performance
- ➤ Design and construction of ultra-fast (200GHz) electronics.
- > End-to-end simulation of large systems
- > Development of Library of SiPM & MCP pulses
- > Studies in FNAL Test Beam
- Real-time processing for PET

Micro Channel Plate Photo Multiplier Tube (MCP/PMT) are Tool of Choice

- Jerry Va'Vra SLAC (Presented at Chicago Sep 2007)
 - Upper Limit on MCP-PMT resolution: $\sigma_{\text{MCP-PMT}} \sim 4.5 \text{ps}$


Photonis MCP-PMT 85012-501 (64 pixels, ground all pads except one)


- Takayoshi Ohshima of University of Nagoya (Presented at SLAC Apr 2006)
 - Reached a $\sigma_{\text{MCP-PMT}} \sim 6.2 \text{ps in beam test}$
 - Used 2 identical Hamamatsu detectors in beam
 - Beam measured with 1 cm quartz radiator (Npe ~50)

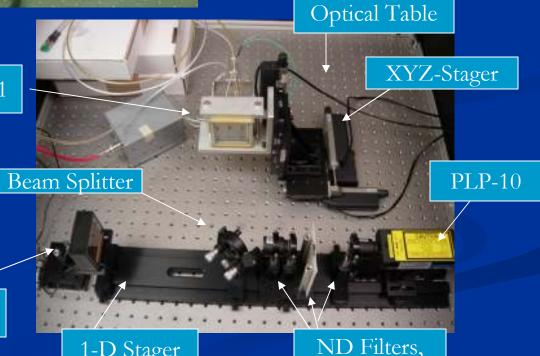
U.Chicago Engineering Highlights

- Development of equal-time anode structure for PMT's
- Designed Voltage Control Oscillator using IBM 0.13um SiGe BiCMOS8HP
- More challenging Time Stretcher chip (including ultra low timing jitter/walk discriminator & dual-slope ramping time stretching circuits etc.)
 - From simulations, accuracy not good enough (5-10 psecs)
 - Power concerns
- NEW: Invented 2 new schemes a) Multi-threshold comparators, b) 50 GHz 64-channel waveform sampling. Both schemes give energy and leading edge time.
- Current plan: Save waveform and use multiple thresholds to digitize. Use CMOS
 - Dec meeting at UChicago with UChicago, ANL, Saclay, LBL & Hawaii, IBM and Photonis

Argonne's Laser Timing Lab

DAQ: Camac CC-USB processor connected to laptop running linux

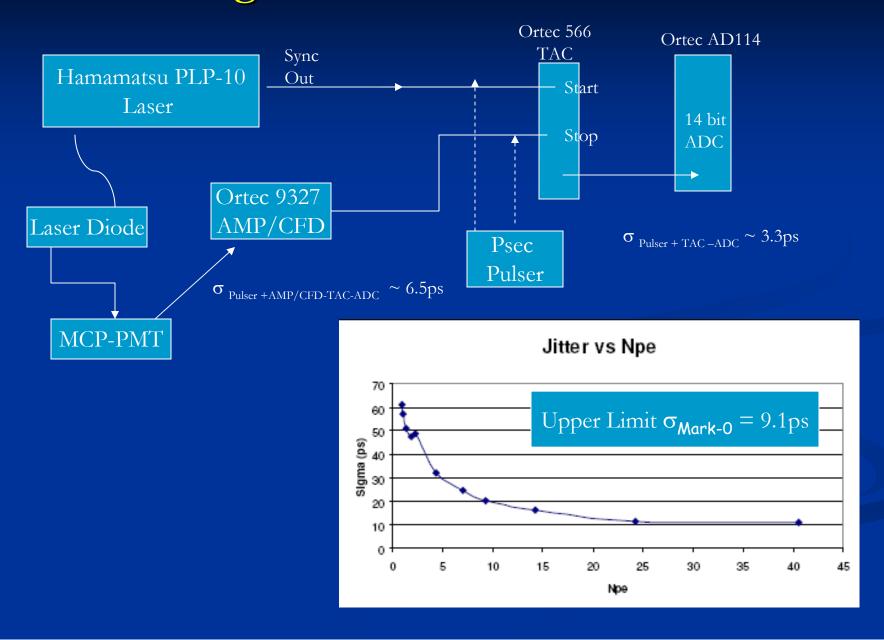
Ortec 9306,9307,9327


Ortec 566 TAC

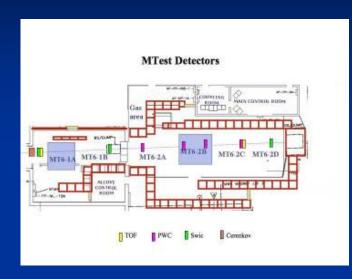
Ortec AD114

Hamamatsu PLP-10 Laser (Controller w/a laser diode head) 405 & 635nm head.

Pulse to pulse jitter < 10psec (Manufacture Specifications)

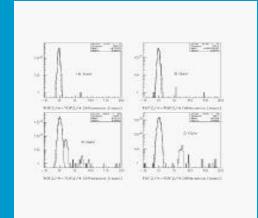

Second MCP-PMT

Mark-1


1-D Stager

ND Filters, Iris Diaphragm

Timing Resolution with PLP-10 Laser


Fermilab's Meson Test Beam Facility

- Time-of-flight system limited to below 2 GeV
- Two counters of 20 mm scintillator & 4 PMT's
- Best resolution of 160 psec

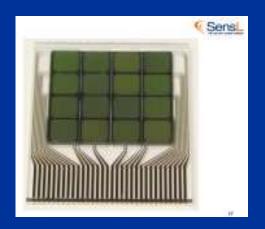
T958: Fast Timing Detectors at Fermilab test beam


UTA (**Brandt**), Alberta (Pinfold), Louvain (Piotrzkowski), FNAL (Albrow)

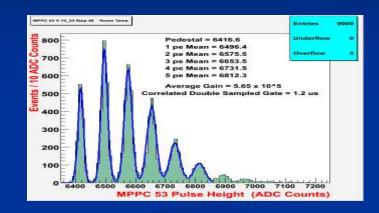
Physics Motivation: FP420 an R&D program to investigate feasibility of double proton tagging at 420m as a means to discover new physics/measure properties of new physics at LHC

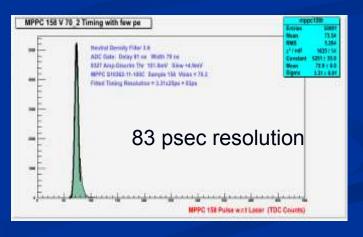
Goal of R&D: Develop a fast time-of-flight detector <20 psec for pile-up rejection (determine using timing of protons whether they originate from hard scattering vertex)

Two detectors tested:
GASTOF (~40 psec)
QUARTIC (~60 psec) -->


Both use MCP/PMTs

Research on SiPM Timing


SiPM Key Properties


- Sensitive to single photons
- Resolvable p.e. peaks
- High intrinsic gain (>10⁵)
- Low operating voltage
- Insensitive to magnetic fields

Fermilab has purchased new SiPM array from SensL for timing tests

Bob Wagner has tested timing properties of a Hamamatsu SiPM:

Future Efforts

- Grant will support:
 - Continued engineering at U.Chicago and ANL in support of development of MCP/PMT technology and ultra-fast timing electronics
 - Fermilab to start on the path to a significantly better TOF system for the test beam
 - Purchase of amplifiers, MCP/PMT's, oscilloscopes for group use.
 - World-wide collaborative efforts