Neutrino Physics Where We Are & Where We're Going

The Physics of Neutrinos: Progress and Puzzles

The 87th Compton Lecture Series

Enrico Fermi Institute, University of Chicago

Andrew T. Mastbaum

June 2, 2018

The Physics of Neutrinos: Progress and Puzzles The 87th Compton Lecture Series

Agenda

March 31	Little, Neutral, Mysterious: An Introduction to Neutrino Physics
April 7	Lost and Found: Solar Neutrinos and Oscillations
April 14	Supernova Neutrinos: Neutrinos From the Beyond the Solar System
April 21	Neutrinos in Cosmology (Dr. Marco Raveri, KICP)
April 28	Gone Fission': Neutrinos at Nuclear Reactors
May 5	The Small Things: Neutrino Mass and Neutrinoless Double-Beta Decay
May 12	How Many Neutrinos Are There? Sterile Neutrinos
May 19	Neutrinos, the Universe, and CP Violation
May 26	No lecture
June 2	Neutrino Physics: Where We Are & Where We're Going

Neutrinos Everywhere!

Neutrinos Everywhere!

Wolfgang Pauli

1930: A bold proposal...

Dear Radioactive Ladies and Gentlemen,

I have hit upon a **desperate remedy** ... there could exist electrically-neutral particles [emitted in beta decay] ...

$$n \rightarrow p + e^- + \nu$$

Wolfgang Pauli

1930: A bold proposal...

Dear Radioactive Ladies and Gentlemen,

I have hit upon a **desperate remedy** ... there could exist electrically-neutral particles [emitted in beta decay] ...

$$n \rightarrow p + e^- + \nu$$

Cowan & Reines

In **1956**, neutrinos are first observed: antineutrinos from a nuclear reactor at Savannah River

LEPTONS

ANTI LEPTONS

 $ar{
u}_e$

Standard Model of Particle Physics

Standard Model of Particle Physics

Standard Model of Particle Physics

Neutrino Oscillations

Neutrinos can change type in flight if they have a small but nonzero mass!

time, distance

Nuclear Reactors

Nuclear Reactors Chooz Bugey Rovno Savannah River

ILL Goesgen

Palo Verde

Krasnoyarsk

KamLAND

& more!

8

Nuclear Reactors Chooz Bugey Rovno Savannah River

ILL Goesgen

Palo Verde

Krasnoyarsk

KamLAND

& more!

Particle Accelerators

Nuclear Reactors

Chooz Bugey Rovno

Savannah River

ILL Goesgen

Palo Verde

Krasnoyarsk

KamLAND

& more!

RENO Image: IAEA Image Bank, CC-BY-SA 2.0, Wikimedia Commons

MINOS

T2K

NOvA

Particle Accelerators

& more!

Neutrino Oscillations

Probability that a neutrino of one type ends up as another:

$$P(\nu_e \to \nu_e) \quad P(\nu_\mu \to \nu_\tau)$$

$$P(\nu_\mu \to \nu_e) \quad P(\bar{\nu}_\mu \to \bar{\nu}_e)$$

$$P(\bar{\nu}_e \to \bar{\nu}_e) \quad \dots$$

Depends on neutrino energy, time it's been propagating, and a few constants of nature:

Overall probability $\theta_{12}, \theta_{13}, \theta_{23}$

$$\theta_{12},\theta_{13},\theta_{23}$$

Mass differences
$$\Delta m_{12}^2, \Delta m_{23}^2$$

CP Violation

$$\delta_{
m CP}$$

(neutrinos & antineutrinos oscillate differently)

Neutrino Oscillations

Probability that a neutrino of one type ends up as another:

$$P(\nu_e \to \nu_e) \quad P(\nu_\mu \to \nu_\tau)$$

$$P(\nu_\mu \to \nu_e) \quad P(\bar{\nu}_\mu \to \bar{\nu}_e)$$

$$P(\bar{\nu}_e \to \bar{\nu}_e) \quad \dots$$

Depends on neutrino energy, time it's been propagating, and a few constants of nature:

Overall probability $\theta_{12}, \theta_{13}, \theta_{23}$

$$\Delta m_{12}^2, \Delta m_{23}^2$$

Mass differences

 $\delta_{
m CP}$

(neutrinos & antineutrinos oscillate differently)

Neutrino Puzzles

Neutrino oscillations require that neutrinos have mass. But what are the masses, and why are they so small?

Neutrino oscillations require that neutrinos have mass. But what are the masses, and why are they so small?

Neutrino Cosmology

with neutrinos

no neutrinos

Image: Agarwal and Feldman

Weighing neutrinos using the universe as a scale

Neutrino Cosmology

with neutrinos no neutrinos

Image: Agarwal and Feldman

Weighing neutrinos using the universe as a scale

Image: Karlsruhe Tritium Neutrino Experiment

Neutrino Mass

Neutrino Cosmology

with neutrinos no neutrinos

Image: Agarwal and Feldman

Weighing neutrinos using the universe as a scale

NeutrinolessDouble Beta Decay

A rare form of nuclear decay, so far never observed

Only if neutrino is its own antiparticle

Image: Karlsruhe Tritium Neutrino Experiment

Neutrino Mass

Neutrino Cosmology

with neutrinos no neutrinos

Image: Agarwal and Feldman

Weighing neutrinos using the universe as a scale

NeutrinolessDouble Beta Decay

A rare form of nuclear decay, so far never observed

Only if neutrino is its own antiparticle

Image: Karlsruhe Tritium Neutrino Experiment

Several neutrino oscillation experiments hinting at a new, fourth neutrino type:

LSND Liquid Scintillator Neutrino Detector

v_e appearance in a ν_μ beam

Reactors

Updated reactor flux calculations

ν_e disappearance at small distances

MiniBooNE

An independent check of LSND

ν_e appearance in a ν_μ beam

Gallium

Solar neutrino experiment calibrations

ν_e disappearance at small distances

Sterile Neutrinos 🖘

CP Violation

We don't know whether neutrinos and antineutrinos interact differently (CP Violation)

If so, decays of a new, heavy neutrino type in the early universe could help explain the matter/antimatter asymmetry we see today

DEEP UNDERGROUND NEUTRINO EXPERIMENT

A major international effort to measure this effect, using neutrino beam from Fermilab to South Dakota (SURF)

Neutrino Interactions

$$P(\nu_{\alpha} \to \nu_{\beta}) \sim \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{E}\right)$$

To measure oscillations, you need to know the neutrino energy

We typically can only produce neutrinos with a broad range of energies

We can only measure the neutrino energy indirectly, based on what comes out

We need a better understanding of neutrino interactions: theory & experiment

Neutrino Interactions

A worldwide effort
aimed at better
understanding neutrino
interactions, required for
higher-precision
experiments!

What is the mass of the neutrino, and why is it so small?

What is the ordering of the neutrino masses?

Is the neutrino its own antiparticle?

Could CP violation in neutrino interactions explain the matter/antimatter asymmetry?

Are there additional neutrinos beyond the known three types?

What is the mass of the neutrino, and why is it so small?

What is the ordering of the neutrino masses?

Is the neutrino its own antiparticle?

Could CP violation in neutrino interactions explain the matter/antimatter asymmetry?

Are there additional neutrinos beyond the known three types?

What is the mass of the neutrino, and why is it so small?

--- Neutrinoless Double-Beta Decay, Tritium Beta Decay, Cosmology

What is the ordering of the neutrino masses?

Is the neutrino its own antiparticle?

Could CP violation in neutrino interactions explain the matter/antimatter asymmetry?

Are there additional neutrinos beyond the known three types?

→ Neutrinoless Double-Beta Decay, Tritium Beta Decay, Cosmology

What is the ordering of the neutrino masses?

Is the neutrino its own antiparticle?

→ Neutrinoless Double-Beta Decay

Could CP violation in neutrino interactions explain the matter/antimatter asymmetry?

Are there additional neutrinos beyond the known three types?

What is the mass of the neutrino, and why is it so small?

--- Neutrinoless Double-Beta Decay, Tritium Beta Decay, Cosmology

What is the ordering of the neutrino masses?

Is the neutrino its own antiparticle?

 \longrightarrow Neutrinoless Double-Beta Decay

Could CP violation in neutrino interactions explain the matter/antimatter asymmetry?

--- CP violation searches, DUNE and Hyper-Kamiokande

Are there additional neutrinos beyond the known three types?

→ Neutrinoless Double-Beta Decay, Tritium Beta Decay, Cosmology

What is the ordering of the neutrino masses?

Is the neutrino its own antiparticle?

→ Neutrinoless Double-Beta Decay

Could CP violation in neutrino interactions explain the matter/antimatter asymmetry?

--- CP violation searches, DUNE and Hyper-Kamiokande

Are there additional neutrinos beyond the known three types?

--- Sterile neutrino searches, including Fermilab Short-Baseline Program

→ Neutrinoless Double-Beta Decay, Tritium Beta Decay, Cosmology

What is the ordering of the neutrino masses?

Is the neutrino its own antiparticle?

→ Neutrinoless Double-Beta Decay

Could CP violation in neutrino interactions explain the matter/antimatter asymmetry?

--- CP violation searches, DUNE and Hyper-Kamiokande

Are there additional neutrinos beyond the known three types?

--- Sterile neutrino searches, including Fermilab Short-Baseline Program

Additional interactions we could discover via neutrinos?

→ Solar neutrinos, long-baseline oscillations (e.g. DUNE)

Neutrinos as Tools

Nuclear Reactor Monitoring

Nuclear Reactor Monitoring

Nuclear Reactor Monitoring

You can't shield neutrinos!

Core **Radiative Zone Convective Zone** Photosphere Cartoon: L. Winslow Image: NASA

Photon Core **Radiative Zone Convective Zone** Photosphere Cartoon: L. Winslow Image: NASA

Photon

Core

Radiative Zone

Convective Zone

Cartoon: L. Winslow Image: NASA

Photosphere

SN1987A

February 23, 1987

Large Magellanic Cloud

(170,000 light years away)

Type II Supernova

Relic Neutrinos

Can we detect neutrinos left over from the Big Bang?

PTOLEMY aims to detect these lowenergy neutrinos when they interact and produce an electron

Beta Decay

$$^{3}\text{H} \rightarrow ^{3}\text{He} + e^{-} + \bar{\nu}_{e}$$

$$\rightarrow \rightarrow + \bullet + \bullet$$

Neutrino Capture

$$\nu_e + {}^3\mathrm{H} \rightarrow {}^3\mathrm{He} + e^ \bullet + \bullet \rightarrow \bullet + \bullet$$

PTOLEMY Prototype

Princeton Plasma Physics Laboratory, USA

Ultra-High Energy Sources

Ultra-High Energy Sources

Bert

August 8, 2011 Energy: 1.04 PeV

Ernie

January 3, 2012 Energy: 1.14 PeV

PeV:

 $100,000,000\times$ more energy than solar neutrinos $100\times$ more energy than the LHC

Today, IceCube has detected over 80 Ultra-High Energy neutrinos

The source of these high-energy neutrinos is currently unknown!

IceCube works to correlate these events with other astrophysical observations e.g., gamma ray sources or gravity waves

These particles still remain mysterious in many ways, and a rich field of experiments are probing their properties with ever-increasing precision

These particles still remain mysterious in many ways, and a rich field of experiments are probing their properties with ever-increasing precision

A number of unexplained results and fundamental open questions make neutrino physics an exciting area, ripe for important discoveries!

These particles still remain mysterious in many ways, and a rich field of experiments are probing their properties with ever-increasing precision

A number of unexplained results and fundamental open questions make neutrino physics an exciting area, ripe for important discoveries!

Meanwhile, neutrinos are a powerful tool for discovery, giving us a window into otherwise inaccessible systems like the interiors of stars or supernovae

Learning More

Fermilab

Visit Fermilab

Coming to Fermilab to do research?

Visit the Fermilab users page

Whether you're interested in the science conducted here or just come to fish in our ponds, you're welcome at Fermilab. The laboratory is open to visitors every day of the week from 8 a.m. to 6 p.m. from November to March and from 8 a.m. to 8 p.m. the rest of the year.

SELF-GUIDED TOURS

Fermilab visitors are allowed to visit two buildings on their own. In Wilson Hall, visitors can explore the exhibit and viewing areas on the first and 15th floor as well as the Fermilab Art Gallery on the second floor. Sign in at the reception desk on the first floor of Wilson Hall. The hours are

Pay a Visit to Fermilab!

Your Neighborhood Physics Lab

Colloquium Lecture Series 4 PM, Wednesdays

Ask A Scientist 1-4 PM, first Sundays

"Get to Know" Tours Wednesdays, summer Sundays

> Tevatron and D0 Tours First Tuesday

Schedule and registration online:

https://www.fnal.gov/pub/visiting

Sign up for the Fermilab Frontiers email newsletter

Web & Social Media!

Many neutrino experiments Lots have pages to follow are active on Twitter

Hey, Twitter! We have a shiny new website and we're excited to share it with you. Check us out at novaexperiment.fnal.gov and learn all about how we study #neutrinos to better understand the universe.

on Facebook

Websites with lots more details and information

Great Science Journalism!

FERMILAB

Science News

sciencenews.org

Mysterious neutrino surplus hints at the existence of new particles

The MiniBooNE experiment found more interactions of the subatomic particles than expected

BY EMILY CONOVER 3:45PM, JUNE 1, 2018

existence of a new type of neutrino.

Symmetry Magazine symmetry magazine.org

Sterile neutrino sleuths

01/30/18 \mid By Tom Barratt and Leah Poffenberger

Meet the detectors of Fermilab's Short-Baseline Neutrino Program, hunting for signs of a possible fourth type of neutrino.

Neutrinos are not a sociable bunch. Every second, trillions upon trillions of the tiny

Scientific American scientificamerican.com

SCIENTIFIC AMERICAN.

SCIENTIFIC AMERICAN MAY 2018

The New Era of Multimessenger Astronomy

Astronomers' newfound ability to see the same cosmic events in light, particles and gravitational waves—a synthesis called multimessenger astronomy—gives them a fuller picture of some of the universe's most mysterious phenomena

By Ann Finkbeiner

A neutrino hit on September 22, 2017, at 4:54 P.M. Eastern time. the nearly massless elementary particle barreled through the sensors of the IceCube Neutrino Observatory, an experiment buried in the Antarctic ice. This neutrino was rare, carrying an energy of more than 100 tera electron volts, about 10 times the energy reachable by particles inside the most powerful accelerators on Earth. Thirty seconds later IceCube's computers sent out an alert with the neutrino's energy, the time and date, and roughly where it came from in the sky.

Artwork by Sandbox Studio, Chicago with Corinne Mucha

Game-changing neutrino experiments

05/24/18 | By Ali Sundermier

This neutrino-watchers season preview will give you the rundown on what to expect to come out of neutrino research in the coming years.

There's a lot to look forward to in the world of neutrinos, tiny particles that are constantly streaming through us unnoticed.

Great Science Journalism

Great article this week anticipating new results at an important international conference next month

symmetrymagazine.org/article/game-changing-neutrino-experiments

Thank You!