The Small Things Neutrino Mass & Double-Beta Decay

The Physics of Neutrinos: Progress and Puzzles

The 87th Compton Lecture Series

Enrico Fermi Institute, University of Chicago

Andrew T. Mastbaum

May 5, 2018

The Physics of Neutrinos: Progress and Puzzles The 87th Compton Lecture Series

Agenda

March 31	Little, Neutral, Mysterious: An Introduction to Neutrino Physics
April 7	Lost and Found: Solar Neutrinos and Oscillations
April 14	Supernova Neutrinos: Neutrinos From the Beyond the Solar System
April 21	Neutrinos in Cosmology (Dr. Marco Raveri, KICP)
April 28	Gone Fission': Neutrinos at Nuclear Reactors
May 5	The Small Things: Neutrino Mass and Neutrinoless Double-Beta
May 12	How Many Neutrinos Are There? Sterile Neutrinos
May 19	Long-Baseline Neutrino Oscillations and CP Violation
May 26	No lecture
June 2	Where We Are/Where We're Going: Open Questions and Future

Oscillations told us the mass differences

V Neutrino Mass III

A full accounting of mass for Standard Model particles

A full accounting of mass for Standard Model particles

A full accounting of mass for Standard Model particles

A full accounting of mass for Standard Model particles

A full accounting of mass for Standard Model particles

A full accounting of mass for Standard Model particles

A full accounting of mass for Standard Model particles

A hint of "new physics" beyond the Standard Model

A full accounting of mass for Standard Model particles

A hint of "new physics" beyond the Standard Model

A full accounting of mass for Standard Model particles

A hint of "new physics" beyond the Standard Model

A full accounting of mass for Standard Model particles

A hint of "new physics" beyond the Standard Model

Why are the neutrino masses so weirdly tiny?

Standard Physics?

Neutrinos work just like anything else, but the masses happen to be really small

A full accounting of mass for Standard Model particles

A hint of "new physics" beyond the Standard Model

Why are the neutrino masses so weirdly tiny?

Standard Physics?

Neutrinos work just like anything else, but the masses happen to be really small

New Physics?

Ex. Seesaw Mechanism

$$m_{\nu} \times m_N \simeq m_q \times m_q$$

A full accounting of mass for Standard Model particles

A hint of "new physics" beyond the Standard Model

A full accounting of mass for Standard Model particles

A hint of "new physics" beyond the Standard Model

How can we study it?

V Neutrino Mass III

A full accounting of mass for Standard Model particles

A hint of "new physics" beyond the Standard Model

How can we study it?

Cosmology

A full accounting of mass for Standard Model particles

A hint of "new physics" beyond the Standard Model

How can we study it?

Cosmology

A full accounting of mass for Standard Model particles

A hint of "new physics" beyond the Standard Model

How can we study it?

Cosmology

Beta Decay

Neutrinoless Double Beta Decay

Cosmology

"Weighing the neutrino, using the universe as a scale"

Cosmology

Neutrinos impact the formation of structures in the universe

with neutrinos

without neutrinos

Cosmology

Constraints on the neutrino mass from cosmology

 $\Sigma_{\nu} m_{\mu} < 0.2 - 0.6 \text{ eV}$

Planck Satellite

(c) ESA (Image by AOES Medialab)

An upper bound on the sum of all three neutrino masses

$$(A,Z) \rightarrow (A,Z+1) + \beta + \bar{\nu}_e$$

James Chadwick

Wolfgang Pauli

Enrico Fermi

$$(A,Z) \rightarrow (A,Z+1) + \beta + \bar{\nu}_e$$

James Chadwick

Fig. 5. Energy distribution curve of the beta-rays.

Wolfgang Pauli

Enrico Fermi

This distribution of electron energies depends on the neutrino mass

$$(Q - E_e)^2 \Rightarrow (Q - E_e)\sqrt{(Q - E_e)^2 - m_\nu^2 c^4}$$

which apparently is really small

$$(A,Z) \rightarrow (A,Z+1) + \beta + \bar{\nu}_e$$

Electron energy - maximum possible energy -----

KATRIN

Karlsruhe Tritium Neutrino Experiment

Start with a very light nucleus

Tritium, ³H

Pre-Spectrometer

Choose only electrons near the maximum energy

MAC-E Filter

Ultra-sensitive electron energy measurement device

KATRIN

Karlsruhe Tritium Neutrino Experiment

KATRIN

Karlsruhe Tritium Neutrino Experiment

Current Measurements

 $m(\nu_e) < 2 \text{ eV}$

0.000004% of electron mass

KATRIN Expectation

$$m(\nu_e) < 0.2 \text{ eV}$$

0.0000004% of electron mass

Commissioning now!

Neutrinoless Double Beta Decay

Fundamental particles have a property called spin, which can be oriented "up" or "down"

outrun the positron

Fundamental particles have a property called **spin**, which can be oriented "up" or "down"

The handedness is called **helicity**

For whatever reason, the weak interaction only talks to

For whatever reason, the weak interaction only talks to

 V_L left-handed neutrinos and right-handed antineutrinos

left-handed neutrino

For whatever reason, the weak interaction only talks to

 V_L left-handed neutrinos and right-handed antineutrinos

For whatever reason, the weak interaction only talks to

U_L left-handed neutrinos and right-handed antineutrinos

For whatever reason, the weak interaction only talks to

U_L left-handed neutrinos and right-handed antineutrinos

For whatever reason, the weak interaction only talks to

U_L left-handed neutrinos and right-handed antineutrinos

Is there really something different, besides the label?

A Dirac Fermion

Distinct particle and antiparticle, each with left and right handed states

Paul Dirac

A Dirac Fermion

Distinct particle and antiparticle, each with left and right handed states

Paul Dirac

A Majorana Fermion

One particle with left and right handed states

Ettore Majorana

(Anti)Neutrinos?

What's the difference between neutrinos and antineutrinos?

(Anti) Neutrinos?

What's the difference between neutrinos and antineutrinos?

A Dirac Fermion

Distinct particle and antiparticle, each with left and right handed states

(Anti)Neutrinos?

What's the difference between neutrinos and antineutrinos?

A Dirac Fermion

Distinct particle and antiparticle, each with left and right handed states

A Majorana Fermion

One particle with left and right handed states

(Anti)Neutrinos?

What's the difference between **neutrinos** and **antineutrinos**?

A Dirac Fermion

Distinct particle and antiparticle, each with left and right handed states

A Majorana Fermion

One particle with left and right handed states

Here, the neutrino is its own antiparticle, with L and R states

Neutrinoless Double-Beta Decay

Beta Decay

Neutrinoless Double-Beta Decay

Beta Decay

Double Beta Decay

Correlated, simultaneous beta decays

Neutrinoless Double-Beta Decay

Beta Decay

Double Beta Decay

Correlated, simultaneous beta decays

Normal Standard Model Process

NeutrinolessDouble Beta Decay

"Antineutrino" is internally absorbed as a "neutrino"

Only if neutrino is its own antiparticle

Big Implications

$$\nu = \bar{\nu}$$

Neutrinos are their own antiparticles

"Neutrinos" are the left-handed form,

"antineutrinos" are the right-handed form

Conservation of Lepton Number is violated

Neutrinoless double beta decay creates leptons without any antileptons, breaking the balance. Ingredient for matter/antimatter asymmetry.

$$\mathcal{L}_5$$

Physics Beyond the Standard Model

Evidence that the Standard Model is just a glimpse of a more complete theory.

Experimental Searches

Combined energy of both electrons -----

The **neutrinoless** version would be extremely rare, so you need a whole lot of nuclei to see it

The SNO+ Experiment

SNG

6800 feet underground!

Electronics & Instrumentation

780 tonnes scintillator (LAB) inside a 12 meter diameter acrylic sphere

7,000 tonnes water (shielding)

10,000 Photomultiplier Tubes

The Experiment Big bucket of liquid scintillator Flash of light when charged particles go through Photomultiplier **Tubes** Super sensitive light detectors

Photomultiplier

Super sensitive light detectors

Super sensitive light detectors

light detectors

Neutrino Mass

SNO+ Reach (Phase I)

The Hard Part Is Not Being Fooled

The Hard Part Is Not Being Fooled

Neutrinoless Double Beta Decay

The Hard Part Is Not Being Fooled

Neutrinoless Double Beta Decay

Two-Neutrino Double Beta Decay

The Hard Part Is Not Being Fooled

Neutrinoless Double Beta Decay

Two-Neutrino Double Beta Decay

Radioactive Decays

The Hard Part Is Not Being Fooled

Neutrinoless Double Beta Decay

Two-Neutrino Double Beta Decay

Radioactive Decays

The Hard Part Is Not Being Fooled

Neutrinoless Double Beta Decay

Two-Neutrino Double Beta Decay

Radioactive Decays

Solar Neutrinos

The Hard Part Is Not Being Fooled

Neutrinoless Double Beta Decay

Two-Neutrino Double Beta Decay

Radioactive Decays

Solar Neutrinos

Muon Spallation

The Hard Part Is Not Being Fooled

Neutrinoless Double Beta Decay

Two-Neutrino Double Beta Decay

Radioactive Decays

Solar Neutrinos

Muon Spallation

flashes of light

The Hard Part Is Not Being Fooled

Neutrinoless Double Beta Decay

Two-Neutrino Double Beta Decay

Radioactive Decays

Solar Neutrinos

Muon Spallation

The Hard Part Is Not Being Fooled

Neutrinoless Double Beta Decay

Two-Neutrino Double Beta Decay

Radioactive Decays

Solar Neutrinos

Muon Spallation

1. Look at a narrow range of energies

The Hard Part Is Not Being Fooled

Neutrinoless Double Beta Decay

Two-Neutrino Double Beta Decay

Radioactive Decays

Solar Neutrinos

Muon Spallation

1. Look at a narrow range of energies

The Hard Part Is Not Being Fooled

Neutrinoless Double Beta Decay

Two-Neutrino Double Beta Decay

Radioactive Decays

Solar Neutrinos

Muon Spallation

- 1. Look at a narrow range of energies
- 2. Fiducial volume: cut away the edges

The Hard Part Is Not Being Fooled

Neutrinoless Double Beta Decay

Two-Neutrino Double Beta Decay

Radioactive Decays

Solar Neutrinos

Muon Spallation

- 1. Look at a narrow range of energies
- 2. Fiducial volume: cut away the edges
- 3. Muons: go deep underground

The Hard Part Is Not Being Fooled

Neutrinoless Double Beta Decay

Two-Neutrino Double Beta Decay

Radioactive Decays

Solar Neutrinos

Muon Spallation

- 1. Look at a narrow range of energies
- 2. Fiducial volume: cut away the edges
- 3. Muons: go deep underground
- 4. Decays: use flash timing

often two nearby flashes superimposed

This can get very fancy. Machine learning, AI, etc.

The Hard Part Is Not Being Fooled

Neutrinoless Double Beta Decay

Two-Neutrino Double Beta Decay

Radioactive Decays

Solar Neutrinos

Muon Spallation

- 1. Look at a narrow range of energies
- 2. Fiducial volume: cut away the edges
- 3. Muons: go deep underground
- 4. Decays: use flash timing
- 5. Solar neutrinos: use energy
 - And direction to Sun??

Understanding the Detector

Understanding the Detector

Understanding the Detector

Data Laboratory Experiments Deployment in Detector MONORMANTS CARRIED ACCURE CARRIED

Calibration Sources

Understanding the Detector

1000 tonnes of ultra high purity liquid scintillator ... a mile underground

1000 tonnes of ultra high purity liquid scintillator ... a mile underground

1000 tonnes of ultra high purity liquid scintillator ... a mile underground

over 5,200 feet of pipes, and 4,000 welds

1000 tonnes of ultra high purity liquid scintillator ... a mile underground

over 5,200 feet of pipes, and 4,000 welds

rs

scintillator brought in on rail cars

Need to record the signals from **10,000** light detectors

Need to record the signals from **10,000** light detectors

Need to record the signals from **10,000** light detectors

electronics
"maintenance"

Status

May 2017

Start of Water Phase

Detector filled with ultra-pure water

- Similar configuration to SNO
- Understanding detector & backgrounds
- Search for proton decay (beyond the SM)

Fall 2018

Start of Scintillator Phase

Detector filled with ultra-pure scintillator

- Solar neutrinos, reactor & geoneutrinos
- Understanding the scintillator

Early 2019

Start of Double-Beta Phase

Isotope ¹³⁰Te added to the scintillator

Search for neutrinoless double-beta decay

Collaboration

Queen's University University of Alberta Laurentian University SNOLAB TRIUMF

BNL, AASU
Penn, UNC, BHSU
U. Washington
UC Berkeley/LBNL
Chicago, UC Davis

Oxford
Sussex
QMUL
Liverpool
Lancaster

LIP Lisboa LIP Coimbra

TU Dresden

UNAM

780 tonnes liquid scintillator

A very exciting, highly competitive field

Many other promising technologies under development around the world!

CUORE MAJORANA GERDA

EXO/nEXO **SuperNEMO NEXT**

KamLAND-Zen

PandaX-III

I meV/c2

Neutrino Mass

Neutrino oscillations teach us about mass differences, but not the absolute scale

Measuring the mass can address questions of fundamental significance:

- Anything beyond the Standard Model?
- Neutrinos' role in the universe's matter/ antimatter imbalance?

Beta Decay

Neutrino mass affects electron energy

Cosmology

Weighing the neutrino using structures in the universe

Image: Agarwal and Feldman

Neutrinoless Double Beta Decay

Beyond the Standard Model neutrino = antineutrino

Image: Eligio Lisi, 2004

44

U Thank You! III

