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Cosmology

"Weighing the neutrino, using the universe as a scale"
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Cosmology

Neutrinos impact the formation of structures in the universe

with neutrinos without neutrinos
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Image: Agarwal and Feldman Marco Raveri, Lecture #4
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Beta Decay
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Images: Karlsruhe Tritium Neutrino Experiment
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Spin & Helicity

For whatever reason, the weak interaction only talks to

neutrinos and antineutrinos
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What's the Do they interact
difference? differently?

Is there really something different, besides the label?
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Neutrino Masses
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(Anti)Neutrinos?

What's the difference between neutrinos and antineutrinos?

A Dirac Fermion

Distinct particle and

antiparticle, each with left Ve
and right handed states L =1

N n = = n _I_
A Majorana Fermion  'neutrino® < antineutring €
One particle with left and VeL V@R

right handed states

Here, the neutrino is its own antiparticle, with L and X states
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Neutrinoless Double-Beta Decay
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Big Implications

Neutrinos are their own antiparticles

"Neutrinos" are the left-handed form,
"antineutrinos" are the right-handed form

Conservation of Lepton Number is violated

Neutrinoless double beta decay creates leptons
without any antileptons, breaking the balance.
Ingredient for matter/antimatter asymmetry.

Physics Beyond the Standard Model

Evidence that the Standard Model is just a
glimpse of a more complete theory.
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Experimental Searches

%

Two-neutrino double beta decay

e
Neutrinos carry away some energy o)

Broad distribution of electron energies @

%00
>
Neutrinoless double beta decay
No neutrinos coming out

Electrons get all the energy

Combined energy of both electrons ——

The neutrinoless version would be extremely rare,
so you need a whole lot of nuclei to see it
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780 tonnes scmt|||ator (LAB)
inside’a 12 meter dlameter acrylic sphere ‘ A

% 0% 2 kg
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Technical
Challenges

1000 tonnes of ultra high
purity liquid scintillator

——

underground

... @ mile underground purification plant

____//'
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over 5 200 feet of pipes, and 4\000 welds

scintillator brought in on rail cars
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Need to record the signals
from 10,000 light detectors
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Technical
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Need to record the signals
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Technical
Challenges

Need to record the signals
from 10,000 light detectors

electronics

"maintenance"

s i

when things go wrong :(

ey

global computing
grid storage

. isl
custom-designed data analysis!

lectroni isiti
electronics data acquisition

electrical pulses
: . servers
in photomultiplier

flash of light tubes

39



Image: SNO+ Collaboration

May 2017

Fall 2018

Early 2019

Status

Start of Water Phase

Detector filled with ultra-pure water
e Similar configuration to SNO
e Understanding detector & backgrounds
e Search for proton decay (beyond the SM)

Start of Scintillator Phase

Detector filled with ultra-pure scintillator
e Solar neutrinos, reactor & geoneutrinos
e Understanding the scintillator

Start of Double-Beta Phase

Isotope 130Te added to the scintillator

e Search for neutrinoless double-beta decay
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The Future

780 tonnes
liquid scintillator

s BIG
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~50,000 tonnes
water-based

liquid scintillator

780 tonnes
liquid scintillator
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The Future i1s BIG

THEIA

~50,000 tonnes
water-based

liquid scintillator

S —

780 tonnes
liquid scintillator

Many other promising
technologies under
development around

the world!

A very exciting,
highly competitive
field



electron

Beta Decay

A

Neutrino mass affects

KATRIN

electron energy

Neutrino Mass

Neutrino oscillations teach us about mass

I 2 differences, but not the absolute scale

Measuring the mass can address questions
of fundamental significance:

e Anything beyond the Standard Model?
e Neutrinos' role in the universe's matter/

‘I 7 antimatter imbalance?

Neutrinoless

Cosmology Double Beta Decay
Beyond the Standard Model

neutrino = antineutrino

Weighing the neutrino using

structures in the universe
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I/ Thank You! Il



