Neutrinos in Cosmology Little particles on the biggest scale

The Physics of Neutrinos: Progress and Puzzles The 87th Compton Lecture Series Enrico Fermi Institute, University of Chicago

Marco Raveri

The Universe & Neutrinos

Image: logarithmic map of the observable universe, Pablo Carlos Budassi

The constituents of the Universe

Ordinary matter 5%

Dark Energy 68%

Dark Matter 26%

Neutrinos 0.5%

The constituents of the Universe

Ordinary matter 5%

Dark Energy 68%

Dark Matter 26%

Neutrinos 0.5%

The constituents of the Universe

The missing piece

Tiny particle, big scale

The expansion of the Universe

UChicago student

The recessional velocity of galaxies is proportional to their distance from us. The universe expands.

Matter dilutes and cools as the Universe expands

Matter dilutes and cools as the Universe expands

Radiation dilutes and redshifts as the Universe expands

Alpher–Bethe–Gamow

"The Origin of Chemical Elements" (1948)

Ya. B. Zel'dovich

Jim Peebles

Fred Hoyle

Neutrino decoupling

$$\Gamma = n \langle \sigma v \rangle \qquad \Gamma = n \langle \sigma v \rangle \sim H$$

Free streaming of neutrinos since decoupling

Relic neutrino density and number of neutrinos

$$e^+ + e^- \longrightarrow \gamma + \gamma$$

$$\frac{T_{\gamma}^{\text{after}}}{T_{\gamma}^{\text{before}}} = \frac{T_{\gamma}}{T_{\nu}} = \left(\frac{11}{4}\right)^{1/3}$$

$$\rho_{\nu} = \begin{bmatrix} \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\text{eff}} \end{bmatrix} \rho_{\gamma}$$

 $N_{\rm eff} = 3.046$

Direct detection of the neutrino background

$$ho_r \propto a^{-4}$$

Tritium beta decay and capture

Tritium beta decay

e⁺

Tritium beta decay and capture

Tritium beta decay

Neutrino capture on Tritium

PTOLEMY prototype

Detection Prospects of the Cosmic Neutrino Background, Yu-Feng Li

Dark Matter 63%

g

e

qq

τ

v

(ì

μ

V

FORN

v

e

Neutrinos 11% v

Ordinary matter 12%

Radiation 14%

Neutrinos

and Hydrogen recombination

ARK MATTER RELICS

Big

Bang

Thomson scattering

fewer photons have sufficient energy to break the binding energy of an electron in a neutral hydrogen atom

After their last scattering photons free stream to us

Penzias and Wilson (1964)

Cosmic Background Explorer (CoBE) satellite (1989-1993)

The First Three Minutes: A Modern View of the Origin of the Universe, Steven Weinberg

Fluctuations in the Microwave Background

Fluctuations in the Microwave Background

Fluctuations and last scattering

WMAP and Planck

Image: ESA and NASA

Indirect detection of the neutrino background

WMAP

Planck

Dark Matter 66%

g

e

qq

τ

 $\overline{\mathbf{v}}$

(ì

FORN

v

e

Neutrinos 1% Dark Energy 21%

v

Ordinary matter 12%

Neutrinos

and cosmic structures

ARK MATTER RELICS

ē

V

μ

Big

Bang

E

Video: TianNu Simulation Project Team

Video: TianNu Simulation Project Team

Massive neutrino free streaming

$$\lambda_{\rm FS}(t) \sim \frac{v_{\rm th}}{H}$$

Massive neutrino free streaming

$$\lambda_{\rm FS}(t) \sim \frac{v_{\rm th}}{H}$$

with neutrinos

without neutrinos

Constraints on the neutrino mass from Cosmology

 $\Sigma_{\nu}m_{\mu} < 0.2 - 0.6 \text{ eV}$

Euclid

LSST

Image: Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure, K.N. Abazajian et al.

