# Supernova Neutrinos Neutrinos Beyond the Solar System

The Physics of Neutrinos: Progress and Puzzles

The 87th Compton Lecture Series

Enrico Fermi Institute, University of Chicago



Andrew T. Mastbaum

April 14, 2018

# The Physics of Neutrinos: Progress and Puzzles The 87th Compton Lecture Series

#### Agenda









Extremely powerful explosion

Most powerful nuclear
bomb ever tested
× 1,000,000,000,000,000,000,000,000
(a billion billion)



Extremely powerful explosion

Most powerful nuclear
bomb ever tested
× 1,000,000,000,000,000,000,000,000
(a billion billion)



The death of a large star

When stars eventually run out of their nuclear fuel



Extremely powerful explosion

Most powerful nuclear
bomb ever tested
× 1,000,000,000,000,000,000,000
(a billion billion)



The death of a large star

When stars eventually run out of their nuclear fuel



Produce heavy elements

A source of heavy elements essential to form planets, galaxies, people, etc.



Extremely powerful explosion

Most powerful nuclear
bomb ever tested
× 1,000,000,000,000,000,000,000
(a billion billion billion)



The death of a large star

When stars eventually run out of their nuclear fuel



Produce heavy elements

A source of heavy elements essential to form planets, galaxies, people, etc.



Plus: Oodles of neutrinos!  $U_{\nu}^{\nu}U_{\nu}^{\nu}$ 





# NGC 4526 A galaxy, far away (50 million light years)

#### NGC 4526

A galaxy, far away (50 million light years)

#### Supernova 1994D

Type la Supernova

## Supernova Taxonomy





## Supernova Taxonomy

Supernova













Extremely powerful explosion

Most powerful nuclear
bomb ever tested
× 1,000,000,000,000,000,000,000,000
(a billion billion)



Extremely powerful explosion

Most powerful nuclear
bomb ever tested
× 1,000,000,000,000,000,000,000
(a billion billion billion)



Credit: David Malin, Anglo-Australian Observatory



Extremely powerful explosion

Most powerful nuclear
bomb ever tested
× 1,000,000,000,000,000,000,000,000
(a billion billion)



Supernova Energy Loss



Extremely powerful explosion

Most powerful nuclear
bomb ever tested
× 1,000,000,000,000,000,000,000,000
(a billion billion)





Extremely powerful explosion

Most powerful nuclear
bomb ever tested
× 1,000,000,000,000,000,000,000
(a billion billion billion)



Supernova Energy Loss



Extremely powerful explosion

Most powerful nuclear
bomb ever tested
× 1,000,000,000,000,000,000,000
(a billion billion billion)



**Supernova Energy Loss** 

### A Giant Star



### A Giant Star



#### A Giant Star



#### A Giant Star in Trouble



# A Giant Star in Trouble



# A Giant Star in Trouble



# Fe

#### The Chandrasekhar Limit

(c) UChicago



Subrahmanyan Chandrasekhar

# Fe

#### The Chandrasekhar Limit

(c) UChicago



Subrahmanyan Chandrasekhar

# Fe

#### The Chandrasekhar Limit



Subrahmanyan Chandrasekhar







#### The Chandrasekhar Limit

(c) UChicago



Subrahmanyan Chandrasekhar







#### The Chandrasekhar Limit

(c) UChicago



Subrahmanyan Chandrasekhar









Hydrogen



















Helium















Hydrogen

Helium

Pauli Exclusion Principle













Hydrogen

•\?

gen Helium



Carbon

Pauli Exclusion Principle







Chandrasekhar



**UChicago faculty** 1937 - 1995











Hydrogen

Helium

Carbon

Star

Pauli Exclusion Principle



$$e^- + p \rightarrow n + \nu_e$$

#### **Electron Capture**

Further energy loss through **neutrinos** 

$$\gamma + {}^{56}{
m Fe} 
ightarrow 13 lpha + 4n$$

#### **Photodissociation**

This **endothermic** reaction absorbs 124 MeV of energy



1

**Gravity** crushes the core into a proto-neutron star

2

The object reaches the density of a **nucleus**, stops, and **bounces** 

3

A **shock wave** moves outward, leading to an explosion



#### **Neutrino Production**

#### 1. Capture Phase

$$e^- + p \rightarrow n + \nu_e$$

Early on, these come right out

#### 2. Neutronization Burst

Neutrinos are trapped behind the very dense shock wave, until it grows and the density is reduced

#### 3. The Proto-Neutron Star

This is extremely hot and produces many neutrino/antineutrino pairs

$$\gamma \to \nu + \bar{\nu}$$

$$e^{+} + e^{-} \to \nu + \bar{\nu}$$



Models make a definite prediction for the timing and energy of neutrinos expected on Earth



Phys. Rev. D 89, 013011 (2014)



Models make a definite prediction for the timing and energy of neutrinos expected on Earth



Phys. Rev. D 89, 013011 (2014)

We expect about **3 per century** close enough to detect a burst

February 23, 1987

Large Magellanic Cloud (170,000 light years away)

Type II Supernova

February 23, 1987

Large Magellanic Cloud (170,000 light years away)

Type II Supernova

# DETECTORS

# NEUTRINO

# Kamiokande-II Japan



(c) Kamioka Observatory, ICRR University of Tokyo

#### IMB USA



J. Vander Velde, http://www-personal.umich.edu/~jcv

#### Baksan Russia



(c) Institute for Nuclear Research of Russian Academy of Sciences



Kamiokande-II Experiment Kamioka, Hida, Japan February 23, 1987, 07:53 UTC

The world's collection of supernova neutrino data...

# SN1987A Neutrinos

The world's collection of supernova neutrino data...

| Ехр.   | Time (s) | Energy (MeV) | Angle (degrees) |
|--------|----------|--------------|-----------------|
| K-II   | 0        | 20.0         | 18              |
| K-II   | 0.107    | 13.5         | 40              |
| K-II   | 0.303    | 7.5          | 108             |
| K-II   | 0.324    | 9.2          | 70              |
| K-II   | 0.507    | 12.8         | 135             |
| K-II   | 0.686    | 6.3          | 68              |
| K-II   | 1.541    | 35.4         | 32              |
| K-II   | 1.728    | 21.0         | 30              |
| K-II   | 1.915    | 19.8         | 38              |
| K-II   | 9.219    | 8.6          | 122             |
| K-II   | 10.433   | 13.0         | 49              |
| K-II   | 12.439   | 8.9          | 91              |
| IMB    | 0        | 38           | 80              |
| IMB    | 0.412    | 37           | 44              |
| IMB    | 0.650    | 28           | 56              |
| IMB    | 1.141    | 39           | 65              |
| IMB    | 1.562    | 36           | 33              |
| IMB    | 2.684    | 36           | 52              |
| IMB    | 5.010    | 19           | 42              |
| IMB    | 5.582    | 22           | 104             |
| Baksan | 0        | 12.0         |                 |
| Baksan | 0.435    | 17.9         |                 |
| Baksan | 1.710    | 23.5         |                 |
| Baksan | 7.687    | 17.6         |                 |
| Baksan | 9.099    | 20.3         |                 |

What can neutrinos teach us about supernovae?

What can neutrinos teach us about supernovae?



What can neutrinos teach us about supernovae?



What can neutrinos teach us about supernovae?



A validation of the basic supernova dynamics model, based on neutrino **energy** and **timing** measurements

What can neutrinos teach us about supernovae?



based on neutrino energy and timing measurements

What can supernovae teach us about neutrinos?

What can supernovae teach us about neutrinos?

#### 1. How heavy are neutrinos?

$$m_{\nu} \lesssim 14 \text{ eV} \left(\frac{E}{10 \text{ MeV}}\right) \sqrt{\frac{E}{\Delta E}} \times \frac{\Delta T_{\text{obs}}}{10 \text{ s}} \times \frac{50 \text{ kpc}}{D}$$

Compare the observed time spread to the intrinsic time spread of the burst

$$m_{
u_e} \lesssim 30~{
m eV}$$
 (smaller than 0.006% the electron's mass)

What can supernovae teach us about neutrinos?

#### 1. How heavy are neutrinos?

$$m_{\nu} \lesssim 14 \text{ eV} \left(\frac{E}{10 \text{ MeV}}\right) \sqrt{\frac{E}{\Delta E}} \times \frac{\Delta T_{\text{obs}}}{10 \text{ s}} \times \frac{50 \text{ kpc}}{D}$$

Compare the observed time spread to the intrinsic time spread of the burst

 $m_{
u_e} \lesssim 30~{
m eV}$  (smaller than 0.006% the electron's mass)

#### 2. Do neutrinos decay?

Well, some of them made it to Earth from 50 kpc away, so

Lifetime 
$$\tau_{\bar{\nu}_e} \gtrsim 1.5 \times 10^5 \ (m_{\nu_e}/E_{\bar{\nu}_e}) \ {\rm years}$$

What can supernovae teach us about neutrinos?

What can supernovae teach us about neutrinos?

#### 3. Neutrino Oscillations

Matter-enhanced (MSW) oscillations in the supernova material affect the ratios of  $\nu_e/\nu_\mu/\nu_\tau$  as a function of energy



What can supernovae teach us about neutrinos?

#### 3. Neutrino Oscillations

Matter-enhanced (MSW) oscillations in the supernova material affect the ratios of  $\nu_e/\nu_\mu/\nu_\tau$  as a function of energy



#### 4. Neutrino-neutrino interactions

The environment in the collapse is so dense that neutrino interactions with **other neutrinos** are believed to be important

We can test the Standard Model by measuring the neutrino **energy** spectrum



What can supernovae teach us about neutrinos?

#### 3. Neutrino Oscillations

Matter-enhanced (MSW) oscillations in the supernova material affect the ratios of  $\nu_e/\nu_\mu/\nu_\tau$  as a function of energy





To study supernova models in detail, we need more data

To study supernova models in detail, we need more data



To study supernova models in detail, we need more data



more experiments more supernovae

Models predict ~3 supernovae in our galaxy per century

1987 was 31 years ago

Maybe time for another?

Are we ready?

To study supernova models in detail, we need more data



SuperNova Early Warning System

A network of 7 neutrino detectors

Super-Kamiokande KamLAND Daya Bay
Japan China

Borexino LVD HALO IceCube
Italy Italy Canada South Pole

Alerts to the astronomical community



Models predict ~3 supernovae in our galaxy per century

1987 was 31 years ago

Maybe time for another?

Are we ready?

To study supernova models in detail, we need more data



SuperNova Early Warning System

A network of 7 neutrino detectors

| Super-Kamiokande |       | KamLAND | Daya Bay   |
|------------------|-------|---------|------------|
| <sub>Japan</sub> |       | Japan   | China      |
| Borexino         | LVD   | HALO    | IceCube    |
| Italy            | Italy | Canada  | South Pole |

Alerts to the astronomical community



more experiments more supernovae

Models predict ~3 supernovae in our galaxy per century

1987 was 31 years ago

Maybe time for another?

Are we ready?

#### snews.bnl.gov

"No nearby core collapses have occurred since SNEWS started running, but **we are ready** for the next one."

To study supernova models in detail, we need more data



SuperNova Early Warning System

A network of 7 neutrino detectors

| Super-Kamiokande |       | KamLAND | Daya Bay   |
|------------------|-------|---------|------------|
| <sub>Japan</sub> |       | Japan   | China      |
| Borexino         | LVD   | HALO    | IceCube    |
| Italy            | Italy | Canada  | South Pole |

Alerts to the astronomical community



Models predict ~3 supernovae in our galaxy per century

1987 was 31 years ago

Maybe time for another?

Are we ready?

#### snews.bnl.gov

"No nearby core collapses have occurred since SNEWS started running, but **we are ready** for the next one."

Be there! Join the mailing list!

# Supernova Neutrino Detectors

#### Supernova Neutrino Detectors







6800 feet underground!



6800 feet underground!

1,000 tonnes heavy water (2H<sub>2</sub>O) inside a 12 meter diameter acrylic sphere



6800 feet underground!

1,000 tonnes heavy water (2H<sub>2</sub>O) inside a 12 meter diameter acrylic sphere

7,000 tonnes water (shielding)



6800 feet underground!

1,000 tonnes heavy water (2H<sub>2</sub>O) inside a 12 meter diameter acrylic sphere

7,000 tonnes water (shielding)



6800 feet underground!

Electronics & Instrumentation

1,000 tonnes heavy water (2H<sub>2</sub>O) inside a 12 meter diameter acrylic sphere

7,000 tonnes water (shielding)



6800 feet underground!

Electronics & Instrumentation

1,000 tonnes heavy water (2H<sub>2</sub>O) inside a 12 meter diameter acrylic sphere

7,000 tonnes water (shielding)



6800 feet underground!

(upgraded)

Electronics & Instrumentation

1,000 tonnes heavy water (2H<sub>2</sub>O) inside a 12 meter diameter acrylic sphere

7,000 tonnes water (shielding)



6800 feet underground!

(upgraded)

Electronics & Instrumentation

780 tonnes scintillator (LAB)

1,000 tonnes heavy water (2H2O)

inside a 12 meter diameter acrylic sphere

7,000 tonnes water (shielding)



6800 feet underground!

(upgraded)

Electronics & Instrumentation

780 tonnes scintillator (LAB)

1,000 tonnes heavy water (2H2O)

inside a 12 meter diameter acrylic sphere

7,000 tonnes water (shielding)

10,000 Photomultiplier Tubes

New hold-down rope net













Main Course: Inverse Beta Decay



Main Course: Inverse Beta Decay



(Cowan & Reines, 1956)

$$\bar{\nu}_e + p \rightarrow n + e^+$$
 $+ \bullet \rightarrow \bullet + \bullet$ 





Main Course: Inverse Beta Decay



(Cowan & Reines, 1956)







Main Course: Inverse Beta Decay



(Cowan & Reines, 1956)

$$\bar{\nu}_e + p \rightarrow n + e^+$$

$$+ \bullet \rightarrow \bullet + \bullet$$



Proton Elastic Scattering



Main Course: Inverse Beta Decay



(Cowan & Reines, 1956)

$$\bar{\nu}_e + p \rightarrow n + e^+$$
 $+ \bullet \rightarrow \bullet + \bullet$ 



Proton Elastic Scattering

Any type ( $\nu_x$ ) of neutrino  $\nu_x + p \rightarrow \nu_x + p$ gives a proton a kick

$$\nu_x + p \rightarrow \nu_x + p$$

$$\vdots + \bullet \rightarrow \vdots + \bullet$$





Main Course: Inverse Beta Decay



(Cowan & Reines, 1956)

$$\bar{\nu}_e + p \rightarrow n + e^+$$
 $+ \bullet \rightarrow \bullet + \bullet$ 



Any type ( $\nu_x$ ) of neutrino  $\nu_x + p \rightarrow \nu_x + p$ gives a proton a kick

$$\nu_x + p \rightarrow \nu_x + p$$

$$\vdots + \bullet \rightarrow \vdots + \bullet$$







Main Course: Inverse Beta Decay



(Cowan & Reines, 1956)

$$\bar{\nu}_e + p \rightarrow n + e^+$$
 $+ \bullet \rightarrow \bullet + \bullet$ 



gives a proton a kick

Any type 
$$(v_x)$$
 of neutrino  $v_x + p \rightarrow v_x + p$  gives a proton a kick  $\vdots + \bullet \rightarrow \vdots + \bullet$ 







Main Course: Inverse Beta Decay



(Cowan & Reines, 1956)

$$\bar{\nu}_e + p \rightarrow n + e^+$$
 $+ \bullet \rightarrow \bullet + \bullet$ 



Any type ( $\nu_x$ ) of neutrino  $\nu_x + p \rightarrow \nu_x + p$ gives a proton a kick

$$\nu_x + p \rightarrow \nu_x + p$$

$$\vdots + \bullet \rightarrow \vdots + \bullet$$







Main Course: Inverse Beta Decay



(Cowan & Reines, 1956)

$$\bar{\nu}_e + p \rightarrow n + e^+$$

$$+ \bullet \rightarrow \bullet + \bullet$$



Any type ( $\nu_x$ ) of neutrino  $\nu_x + p \rightarrow \nu_x + p$ gives a proton a kick

$$\nu_x + p \rightarrow \nu_x + p$$

$$\vdots + \bullet \rightarrow \vdots + \bullet$$







Main Course: Inverse Beta Decay



(Cowan & Reines, 1956)





Proton Elastic Scattering

Any type  $(v_x)$  of neutrino gives a proton a kick

$$\nu_x + p \rightarrow \nu_x + p$$

$$\vdots + \bullet \rightarrow \vdots + \bullet$$





Menu:

NC  $\nu_x + p \rightarrow \nu_x + p$ 

429 events?

**CC**  $\bar{\nu}_e + p \rightarrow n + e^+$ 

195 events

**CC**  $\bar{\nu}_e + {}^{12}\text{C} \rightarrow {}^{12}\text{B} + e^+$ 

7 events

CC  $\nu_e + {}^{12}\text{C} \rightarrow {}^{12}\text{N} + e^-$ 

3 events

**NC**  $\nu_x + {}^{12}\text{C} \rightarrow {}^{12}\text{C}^* + \nu'$ 

44 events

 $\mathbf{CC/NC}$   $\nu_x + {}^{12}\mathrm{C} \rightarrow {}^{11}\mathrm{C}/{}^{11}\mathrm{B} + X$  2 events

 $\mathbf{CC/NC}$   $\nu_x + e^- \rightarrow \nu_x + e^-$ 

13 events

Thousands across all detectors

#### **Hundreds of events**

for a supernova at 10 kpc (33,000 light years)



















**Proto-Neutron Star** 

$$\gamma \to \nu + \bar{\nu}$$

$$e^{+} + e^{-} \to \nu + \bar{\nu}$$

$$e^{\pm} + N \to e^{\pm} + N + \nu + \bar{\nu}$$



**Proto-Neutron Star** 

$$\gamma \to \nu + \bar{\nu}$$

$$e^{+} + e^{-} \to \nu + \bar{\nu}$$

$$e^{\pm} + N \to e^{\pm} + N + \nu + \bar{\nu}$$





**Proto-Neutron Star** 

$$\gamma \rightarrow \nu + \bar{\nu}$$

$$e^{+} + e^{-} \rightarrow \nu + \bar{\nu}$$

$$e^{\pm} + N \rightarrow e^{\pm} + N + \nu + \bar{\nu}$$



**Proto-Neutron Star** 

Production of neutrino-antineutrino pairs

$$\gamma \to \nu + \bar{\nu}$$

$$e^{+} + e^{-} \to \nu + \bar{\nu}$$

$$e^{\pm} + N \to e^{\pm} + N + \nu + \bar{\nu}$$

Emerge with an averaged energy distribution given by the temperature,  ${\cal T}$ 

$$\frac{dN(E)}{dE} = \frac{E_{\nu}^{\text{tot}}}{6} \frac{120}{7\pi^4} \frac{E^2}{T^4} \left[ \exp\left(\frac{E}{T}\right) + 1 \right]^{-1}$$

Shock The Sun

**Proto-Neutron Star** 



























$$\frac{d\phi(E)}{dE} = \int R_{SN}(z) \frac{dN[E(1+z)]}{dE} (1+z) \left| \frac{dt}{dz} \right| dz$$



### \*

### Diffuse Supernova Neutrino Background (DSNB)

This provides an average measurement of the **total number** and the **energy** of core-collapse supernova neutrinos







$$\frac{d\phi(E)}{dE} = \int R_{SN}(z) \frac{dN[E(1+z)]}{dE} (1+z) \left| \frac{dt}{dz} \right| dz$$





#### Solar Neutrino Fluxes, on Earth

i.e., how many neutrinos per unit area, per second



Astrophys. J. 621(1):L85-L88, 2005.

#### Solar Neutrino Fluxes, on Earth

i.e., how many neutrinos per unit area, per second



Astrophys. J. 621(1):L85-L88, 2005.

#### Solar Neutrino Fluxes, on Earth

i.e., how many neutrinos per unit area, per second



Astrophys. J. 621(1):L85-L88, 2005.

#### Solar Neutrino Fluxes, on Earth

i.e., how many neutrinos per unit area, per second



Astrophys. J. 621(1):L85-L88, 2005.

#### DNSB $v_e$ Flux, on Earth



#### Solar Neutrino Fluxes, on Earth

i.e., how many neutrinos per unit area, per second



Astrophys. J. 621(1):L85-L88, 2005.

### It's really faint!

But sort of like solar neutrinos

#### DNSB $v_e$ Flux, on Earth



#### DNSB v<sub>e</sub> Flux, on Earth



### CONSTRAINING THE HEP SOLAR NEUTRINO AND DIFFUSE SUPERNOVA NEUTRINO BACKGROUND FLUXES WITH THE SUDBURY NEUTRINO OBSERVATORY

Andrew T. Mastbaum

A DISSERTATION

in

#### Physics and Astronomy

Presented to the Faculties of the University of Pennsylvania

ın

Partial Fulfillment of the Requirements for the Degree of

**Doctor of Philosophy** 

2016

#### My Ph.D. thesis again, 2016





#### DNSB v<sub>e</sub> Flux, on Earth





Sudbury Neutrino Observatory
Sudbury, Ontario, Canada
1000 tonnes Heavy Water



Sudbury Neutrino Observatory
Sudbury, Ontario, Canada
1000 tonnes Heavy Water





Sudbury Neutrino Observatory
Sudbury, Ontario, Canada
1000 tonnes Heavy Water



Too small to see, but we can rule out some funny business



Sudbury Neutrino Observatory
Sudbury, Ontario, Canada
1000 tonnes Heavy Water



Too small to see, but we can rule out some funny business



#### Diffuse Supernova Neutrino Background (DSNB) Super-Kamiokande + Gd



Looking for DSNB electron antineutrinos via inverse beta decay



(Cowan & Reines, 1956)



Looking for DSNB electron antineutrinos via inverse beta decay



(Cowan & Reines, 1956)



Ann. Rev. Nucl. Part. Sci. 2010.60:439-462 (2010)



Looking for DSNB

electron antineutrinos

via inverse beta decay



(Cowan & Reines, 1956)



Ann. Rev. Nucl. Part. Sci. 2010.60:439-462 (2010)



Looking for DSNB electron antineutrinos via inverse beta decay



(Cowan & Reines, 1956)



Ann. Rev. Nucl. Part. Sci. 2010.60:439-462 (2010)



Looking for DSNB electron antineutrinos via inverse beta decay



(Cowan & Reines, 1956)



Ann. Rev. Nucl. Part. Sci. 2010.60:439-462 (2010)



Looking for DSNB electron antineutrinos via inverse beta decay





Looking for DSNB electron antineutrinos via inverse beta decay



Gd Gadolinium 157.25

By adding **gadolinium**, the ability to detect neutrons (and therefore inverse beta decay) is greatly improved

There's hope that Super-Kamiokande will detect the DSNB soon!

(this work starts in **June**!)

Kamioka, Hida, Japan



Enormously powerful events crucial to the existence of the universe as we know it



Enormously powerful events crucial to the existence of the universe as we know it



Like with the Sun, neutrinos can teach us about SNe, and SNe about neutrinos



Enormously powerful events crucial to the existence of the universe as we know it



Like with the Sun, neutrinos can teach us about SNe, and SNe about neutrinos



While we wait for a SNe neutrino burst, we can study the DSNB, and learn about the average behavior of supernovae



"How close would you have to be to a supernova to get a lethal dose of **neutrino** radiation?"



https://what-if.xkcd.com/73/

### Next Week

Saturday, April 21, 2018



"study of the origin, evolution, and eventual fate of the universe"

**Neutrino Cosmology** 

with

Dr. Marco Raveri

KICP, UChicago

What can the structure of the universe teach us about neutrinos, and vice versa?

