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1 Introduction

If you read the literature about K° decay experiments you will find lots
of physicist jargon that has not been used in the “Anti-Matter in the
Unwverse” presentation. Below I will make an attempt to relate the
concepts in this talk with some of the common technical mumbo-jumbo
that we physicists like to use. The discussion below assumes that you
have a good understanding of the “Anti-Matter in the Universe” pre-
sentation and that you have some familiarity with quantum mechanics.

2 What is CP Violation?

The key point in this talk is that we have experimentally demonstrated
the “partial decay loophole,” in which a particle (K") and its anti-
particle (K") have a slightly different decay rate into a particular channel
(7). In physics jargon this is called “CP violation.” To explain this I
must first tell you what C and P refer to.



C is a quantum mechanical operator that flips particles into anti-
particles. P applies a parity transformation, z,y,z — —z, —y, —z.
Next recall that K and K° mix into each-other five billion times per
second. In the language of quantum mechanics, the physical states are
super-positions of K and K°:

Kepen = KO""KO (1)
Kota = K'— K’ (2)
The even and odd sub-scripts refer to the CP eigen-states. Let’s take
that last step a little more slowly. The parity is the same for both K"

and K so the parity operator has no effect on Kpen, and K,yqq. Now
we can apply the CP operator to Keyep,

CP[Kopen] = CPIK’ + K = [K" + K" = +[K pen] (3)

so we say that it is an even state of CP. Now apply C to the K44, and
you get a very important minus sign:

CP[K, = CP[K" — K°| = [K* — K"] = —[K 44 (4)
The two-pion final state has even CP,
CPlrm] = +|r7] (5)

so that we expect only the CP-even kaon to decay into two pions, if CP
is a good symmetry. To see how this relates to the particle vs. anti-
particle concept, we must use the language of decay “amplitudes’ in
quantum mechanics. Physical observables are always the square of decay
amplitudes, but interesting things can happen when you add amplitudes
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before squaring them. Define
A= Ampl(K° — ) A= Ampl(K® — 7). (6)

If CP is a good symmetry then A = A; i.e., the particle and anti-particle
decay amplitudes are the same. For the mixed states in Eqs 1,2 we must
add/subtract amplitudes before squaring. Assuming CP symmetry is
good, the amplitude for Ky, is A + A = 2.4 while the amplitude for
Kogqis A— A = 0! This shows again that K, cannot decay into two
pions unless CP symmetry is violated.

So how does K,qq decay 7 It turns out that a 3w state has odd
CP, and indeed about 1/3 of the K44 decay are into three pions. The
remaining 2/3 of the K44 decay into either merv or muv. Furthermore,
the decay K,43q — 37 is much slower than the decay K.yep, — 2. Thus
we can create a pure K,zg beam by simply waiting until all the K yen,
have decayed.

3 Discovery of CP Violation

In 1964, the odd kaon was found to decay into two pions; K,qq — 2.
This was a remarkable discovery! From the discussion above it seemed
that the K had to have a different decay amplitude than K9 i.e.,
A # A. But nature was just teasing us. After many more experiments
it was realized that the even and odd kaon states above are not quite
what nature created. Instead the true kaon states are:

Kg = 1.00228K° + 0.99772K° (7)
K; = 1.00228K" —0.99772K° (8)
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which are slightly asymmetric mixtures of K° and K°. The K is called
K-short because it decays rapidly into two pions with a relatively “short”
life-time. The K7 is called K-long because it takes a relatively “long”
time before it decays into three pions. The mixing asymmetry in Eq. 7,8
is indeed CP violating. It shows that K° — KV is slightly preferred
over KY — KV which demonstrates a slight difference between a matter
particle and its anti-matter partner. However, the mixing asymmetry
does not involve decays, and we really believe that CP violation should
also manifest itself in decays. Despite the lack of CP violation in the
decay, this discovery in 1964 was profound and eventually earned the
discovery team a Nobel prize in 1981. What the original discovery
actually found was K; — nm, and from Eq. 8 we see that it now has a
non-zero decay amplitude of 1.00228.4 —0.99772.4 ~ 0.00456.4. Before
moving on there is some more physics jargon: the mixing asymmetry
in Egs 7,8 is known as “indirect’” CP violation. An asymmetry in the
decay, yet to be discovered, is know as “direct’” CP violation.

Following the discovery in 1964, a holy quest began to find an asym-
metry in the decay; i.e., to show that A # A. However, the mixing
asymmetry poses a serious experimental difficulty. To see this, suppose
that the K" and K decay amplitudes differ by 1 part in 10,000. The
problem is that instead of finding A # A we would determine the mixing
asymmetry to be

Ky = 1.00218K° + 0.99782K0 (9)
K} = 1.00218K° — 0.99782K?0 (10)

i.e., the asymmetry factors 1.00228 and 0.99772 in Eqs 7,8 would have
been measured as 1.00218 and 0.99782 and we could never tell that
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the kaon decay amplitudes A and A were different. From many other
kaon experiments we know that the difference in decay amplitudes must
be much smaller than the 0.228% mixing asymmetry, but how can we
ever un-tangle the direct CP violation from the much more dominant
indirect CP violation?

4 Direct CP Violation

The key to finding direct CP violation is to compare the decays for
two different modes, K; — ntn~ and K; — 7%7%. We essentially
measure the 0.228% mixing asymmetry for the charged (7"7~) and
neutral (7'7%) decay mode; if the two mixing asymmetries are different,
then this must be due to a difference in the decay amplitudes.

This leads us to the final piece of jargon known as Re(€'/e), pro-
nounced real part of epsilon-prime over epsilon. The quantity € =
0.00228 is just the size of the asymmetry in Eqs 7.8. The quantity €’ is
what we really want to measure because it is:

, A-A
CT A+ A (1)

i.e., the fractional difference in the decay amplitudes'. As shown in

Appendix A, we can experimentally measure the ratio Re(€'/€), where
“Re” refers to the real part of the complex amplitude. A non-zero value
of Re(€'/¢€) is un-ambiguous evidence of direct CP violation in a decay.
This situation is very fortunate because it allows us to determine €’ about
1000 times more precisely than the experimental precision. To see this,

!For clarity I have used a slightly modified definition of € here.
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suppose that € ~ 2 x 1079 Then Re(€'/¢) = 2 x 107°/0.0023 ~ 0.001,
so we need to do an experiment with part-per-thousand accuracy to have
part-per-million sensitivity on €. This is not cheating; it’s just picking
a clever experiment!

To give an example of determining something much more accurately
than your experimental precision, suppose you want to measure the
length difference of two football fields to make sure that neither stadium
has cheated on the distance. You get a ball of string and a 12” ruler
to work with. If you try to measure each football field with the 12”
ruler, you will generate a very larger error. However, if you are clever,
you might cut yourself a piece of string that has exactly the length of
one football field, and then compare the length of this string with the
other football field. You won’t know if the football fields are exactly 100
yards long, but you will be able to accurately measure any difference to
much better than an inch! The key is to have a common reference of
length. For the kaons, the nearly even mixture of K° and KV in the
K, provides the common reference. If the mixture were exactly even,
ie, if K; = K% — KU then seeing just one K,4q — 7 decay would
be sufficient to determine that A # A. The mixing asymmetry adds a
complication, but this can be overcome by comparing the charged and
neutral pion decay modes.

In terms of Re(€'/¢), the average of the four experiments (two from
Fermilab and two from CERN) is about (17 4= 2) x 10™%. This rather
obscure way of presenting the result is the asymmetry in the decay
amplitudes relative to the mixing asymmetry. In this talk I simply con-
verted the amplitude-asymmetry to the decay rate asymmetry between



K and K. If you like math, the derivation is given in Appendix B.
The result in terms of the decay rates (R) is

R(K' = ntn7) — R(KY — 7n77)
R(KY — all)
which is less than 1 part per hundred thousand.

= (74+07)x 1075 (12)

5 Time Reversal and the CPT Theorem

The last thing that I would like to discuss is an operator called time
reversal (T). No it does NOT mean going backward in time! The appli-
cation of time-reversal is more like playing a movie backward; if what
you see in the reversed video is allowed by the laws of physics then we
say that T is a good symmetry. Note that breaking glass, or water rush-
ing out of a hose, does not violate T'; the reverse situations are indeed
allowed by the laws of physics, but the probability is too small to ever
see a broken glass re-assemble itself, or water fly back into a hose.

The reason for bringing up T is so I can discuss the CPT theorem.
This is a general and rigorous proof that the laws of physics must be
invariant under the combined operations of C, P and T. So if you play
a movie backward (T), look at it in a mirror (P) and change everything
into anti-matter (C), the laws of physics must be the same. There is
NO such proof for any subset, which means that combinations like CP,
CT, PT, P and C can all be violated without contradicting quantum
field theory. So what’s the difference between CP symmetry and CPT
symmetry?



CPT symmetry implies that particles and anti-particles have exactly
the same mass and exactly the same total decay rate. It is a very strong
statement, and clever experiments have shown this with sensitivities of
parts-per billion and better! The record is held by the neutral kaon;
the kaon and anti-kaon mass difference is less than 1 part in 10'® | CP
symmetry says that partial decay rates are the same if a particle has
more than one channel to decay into. To see how this works with kaon
decays, let R and R be the total decay rates for K° and K, respectively.
The total decay rate is the sum of partial decay rates,

R = Rp+-+ Rpop0+ 30T (13)
1

R = Rptp— + Roo0 + 37 (14)
]

where R +,- and R_o.0 are the decay rates into charged and neutral

pions, and r; are the decay rates into rare channels such as mev, Tuv,

379 and 7tr— 70,

CPT symmetry demands that R = R. CP symmetry implies equality
for each partial decay rate, i.e., Ry = Ro, and r; = 7; for each 1.
Assuming that CPT symmetry is good, a CP violating asymmetry in
one decay mode must be compensated by CP violation in another decay

mode. To see this re-write the asymmetry in Eq. 12 as
Asym(n™n™) = (Ryp+y- — Ry )/R (15)
Asym(n'7") = (R,0,0 — Ry0,0)/R (16)

Neglecting possible CP violating contributions from the rare channels
ri, the total decay asymmetry is

Asym(tot) = Asym(nt 7)) + Asym(n'n?) (17)
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But CPT symmetry says that the total decay asymmetry must be zero,
Asym(tot) = (R— R)/R =0 (18)

which shows that the 7+7~ and 7%7° partial decay asymmetries must
be equal-and-opposite because of CPT symmetry.

[f CPT symmetry is good, which all experiments to date have verified,
and CP symmetry is violated, then doesn’t that suggest T violation?
Absolutely yes! T-violation refers to microscopic irreversibility. Recall
that broken glass and water out of a hose are not T-violating because
the reverse situations are forbidden by probability rather than by any
fundamental laws of physics. T-violation is easiest to explain in the kaon

asymmetry since K — K9 is preferred over K — K by a meager
0.23%.



APPENDIX

A Derivation of Re(¢'/e)

The key point is that we measure experimentally the double ratio (DR )
of decay rates,

R(K; —» mtn7)/R(Kg — nFn™)
R(K — 7% /R(Kg — m70)

The derivation follows using the fact that

e€._ =¢ (20)

€ = —2¢€ (21)

DR = ~ 1+ 6Re(e'/e)  (19)

where € __ is the fractional K"-K" amplitude differences for 7t 7~ de-
cays and €, is the same quantity for 77" decays.

(need to finish this section).

B Derivation of the Decay Asymmetry

This appendix converts the measured quantity Re(e'/€) into a decay
rate asymmetry between K° — 77 and K° — 7.

The asymmetry that we want to determine is

_ R(K* = ntn™) = R(K® — )
‘= R(K" — ntm) (22)
AP AP

A

— 1 — | A/AP (29
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where A (A) is the decay amplitude for the KV (K°) to decay into a
7~ pair. Now recall that €' is the amplitude-asymmetry defined as
€ =(A-A)/(A+ A (24)
which can be inverted to solve for A/ A = 1—2¢. In Eq. 23 we need the
square of A/ A. We must be careful since these are complex amplitudes.
Noting that €™ is the complex conjugate of €,
AJA? = (1 —2€)- (1 =2€") =1—4Re() + | (25)
~ 1 —4Re(¢) (26)
where I have dropped the very small term |€|?.
into Eq. 23 and we get the decay asymmetry,

a=1—[1—4Re(¢")] = 4Re(¢) (27)

Next we have to convert Re(€') in terms of the experimentally deter-
mined quantity Re(€'/e).

Now just plug Eq. 26

EI

Re(€') = Re(e - —) = [Re(e) x Re(€'/e) — Im(e) x Im(€'/e)] (28)

€
where “Re” and “Im” refer to the real and imaginary parts of the
complex numbers. To reduce this further we note that € and € are
complex quantities that make a 45 angle (also called phase) in the
complex plane. It is fortunate the € and € are parallel’> because this

means that I'm(€'/e) ~ 0 and we can ignore the imaginary terms in
Eq. 28. We now have

Re(€) ~ Re(e) x Re(€'/e) = 0.00228 x 0.00212/v/2  (29)
= 3.42x107° (30)

2a proof of this is beyond the scope of this presentation.
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The /2 in the denominator comes from the complex 45° phase, which
leads to a term of cos(45°) = 1/4/2. I don’t have a good explanation
for this phase so you will just have to take it in good faith.

The last step is to note that the denominator in Eq. 22 is the partial
decay rate into 7#*7~. Instead we would like the total decay rate to
be in the denominator. Since the K decays into 77~ 68.6% of the
time (and 31.4% into 7'7%), the total decay rate is 1/0.686 = 1.458
times larger than the partial decay rate into 777 ~. Thus define a new
asymmetry

R(K' — ntm™) — R(KO — 7))
R(KY — all

+

Asym(n™n™) = (31)

— 0.686 x a = 2.7T44Re(e) = 7.4 x 107% . (32)
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