Physics Motivation
- Features of this decay mode
 - "direct" CP violating process
 - measures η in CKM matrix
 - small theoretical uncertainty
 - a few %: called as "gold-plated" mode
 - rare decay: $2.5 \times 10^{-11} \ @ \ SM$
- Comparison to the measurement in B-system
 - precise check of Σ-model
 - probe to NP

E391a Experiment
- Measures $K_L \rightarrow \pi^0 \nu \bar{\nu} \ @ \ KEK \ 12\text{GeV} \ PS \ (Japan)$
 - first dedicated experiment to this decay mode
 - pilot experiment for $K^0\rightarrow\pi^0\eta$ (U-PARC E14)
 - physics runs are taken in 2004-2005

Detection Principle
- To identify $K_L \rightarrow \pi^0 \nu \bar{\nu}$ state
 - $2\gamma \rightarrow \gamma^* \gamma \ cannot \ detect$
- To say "2γ + nothing"
 - $2\gamma \rightarrow \text{Csl calorimeter \ (energy, \ position)}$
 - nothing \rightarrow hermetic veto detector
 - Reconstruect decay vertex with $M(\pi^0)$:
 $M(\pi^0)^2 = 2E_1E_2(1 - \cos \theta)$
 \rightarrow "pencil" beam to improve pt resol.
 - select signal using decay vertex and transverse momentum

What makes background?
- Halo neutron BG: the dominant BG
 - neutron flux surrounding beam core hits detector around beam
 \rightarrow creates π^0 or η ($\rightarrow 2\gamma$)

Background Estimation
- Halo neutron BG was estimated by FLUKA simulation
 - π^0 & η production rate was confirmed by a dedicated run
 - π^0 & η production rate was confirmed by a dedicated run

Results & Summary
- Opening the signal box for the final data sample
 - Statistics
 - $(8.70 \pm 0.61) \times 10^6 \ K_L \ decays$
 - estimated by $K_L \rightarrow 2\pi^0$
 - event sample

Optimized Event Selection
- Event selection was optimized from our previous analysis
 - introduced new selections on the Csl crystal hit pattern

Acceptance: $0.67\% \rightarrow 1.04\% \ (+50\%)$ with keeping the S/N as same level

E391a Final Upper Limit
$\text{BR}(K_L \rightarrow \pi^0 \nu \bar{\nu}) < 2.6 \times 10^{-8} \ @ \ 90\% \ C.L.$

- Improvements
 - $\times 20$ from previous experiment (kTeV)
 - $\times 2.6$ from our previous result