Problem Set 7

Physics 363 May 14, 2008 Spring Quarter 2008

Due in class Wed. May 21.

H.J.Frisch HEP320 (702-7479)

Reading: Perkins Chapter 7, Sections 7-13 to 7-18; Chapter 8, Sections 8.8-8.13. (this is again (even more than last week) a lot of reading on a number of elegant and important topics - more than a single sitting. Please give it several evenings.)

Problems:

- 1. Work through the derivation from Equ. 7.31 to Equ. 7.33, including evaluating the expression for R given by 7.33. Can you explain in words why R has the order-of-magnitude it has?
- 2. Draw the Feynman box diagrams for $K_L^0 \to \mu\mu$ including both the strange and charm quarks. At what order in the s and c quark mass ratio does the decay occur?
- 3. Derive the 'Unitary Triangle' relationship (due to Bjorken)

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_t dV_{tb}^* = 0 (1)$$

Using current values how close to being satisfied is it?

- 4. Compare CP violation in K decays and B decays (be quantitative). Are they from the same source?
- 5. Show that the SM Higgs boson has the right quantum numbers in $SU(2\times U(1))$ to couple the left-handed and right-handed fermions. If you had to construct a universe, what do you make the origin of the values of the couplings (masses)?
- 6. The LHC will turn on shortly. A much bally-hooed objective is the discovery of the Higgs. I confess that I find the derivation of the predicted upper limit on the SM Higgs mass to be fuzzy and confusing. To the extent that you can, write down a clear explanation of the upper limit on the mass (see, for example, Gunion, Haber, Kane, and Dawson- the Higgs Hunter's Guide, Chapters 2 and 3), or go back to the original literature. (This is not easy, and is somewhat open-ended- treat it as you'd like.)