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What is Spin Statistics Theorem?

the contents of spin statistics theorem - Wiki

» The wave functions of a system of identical integer-spin
particles, spin 0, 1, 2, 3, has the same value when the
positions of any two particles are exchanged. Particles with
wave functions symmetric under exchange are called bosons.

» The wave functions of a system of identical half-integer-spin s
=1/2, 3/2, 5/2, are anti-symmetric under exchange, meaning
that the wavefunction changes sign when the positions of any
pair of particles are swapped. Particles whose wavefunction
changes sign are called fermions.
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What is Spin Statistics Theorem?

A little history

» First formulated in 1939 by
Markus Fierz

» Rederived in a more
systematic way in 1940 by
Wolfgang Pauli

» More conceptual
argument was provided in
1950 by Julian Schwinger
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What is Spin Statistics Theorem?

A little history

Feynman Lectures on Physics:
...An explanation has been
worked out by Pauli from
complicated arguments of QFT
and relativity...but we haven'’t
found a way of reproducing his
arguments on an elementary
level...this probably means that
we do not have a complete
understanding of the
fundamental principle
involved...
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Transition Amplitude must be Lorentz Invariant-Spin 0 case
A few heuristic proof From 5 Assumptions to the Theorem
Elementary Proof Using Schwinger’s Lagrangian-by Sudarshan

Transition Amplitude

The transition amplitude to start with an initial state |i > at time —co
and end with |[f > at time +oo is:

00
T =< f|Texp[—i dtH(t)]li >
where 7 is the time ordering symbol: a product of operators to its
right is to be ordered not as written, but with operators at later
times to the left of those at earlier times , and H(t) is the
perturbing hamiltonian in the interaction picture:

H/(t) = exp(+iHot)H1 exp(—iHot)

Key Pointfor the transition amplitude to be Lorentz Invariant, the
time ordering must be frame independent!
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Transition Amplitude must be Lorentz Invariant-Spin 0 case
A few heuristic proof From 5 Assumptions to the Theorem

Elementary Proof Using Schwinger’s Lagrangian-by Sudarshan

The time ordering of 2 spacetime points x and x is frame
independent if their separation is timelike:(x — x')? < 0, but it could
have different temporal ordering in different frames if their
separation is spacelike:(x — x)2 > 0. In order to avoid 7~ being
different in different frames, we must require:

[H(x), Hi(x )] = 0, whenever(x —x )2 > 0
where H)(x) is the density of H)(x), and
e(x) = ¢ (x) + ¢ (x)

[a(k),a(k')] = 0, ¢*(x,t) = f‘:ﬁ‘ e a(k) ,
(a1, 0! ()l = 0, o) = [ e (g
la(k),al(K')]; = (27)*2w 8 (k — K)

Jian Tang Spin Statistics Theorem



Transition Amplitude must be Lorentz Invariant-Spin 0 case
A few heuristic proof From 5 Assumptions to the Theorem

Elementary Proof Using Schwinger’s Lagrangian-by Sudarshan

ke

Obviously, [t (x), ¢T(2)]x = ¢~ (z), ¢~ (z)]x = 0. However,

[+ ()o@l = [k dE =i, ol ()]

_ /rﬁ ik(z—a')

m
= Ky(mr
4wy Cufmr)

=C(r).

To solve this problem, we redefine:

ea(z) = @t(z) + Ap~(2)
el(@) = ¢~ (@) + Xp*(a)

where A is an arbitrary complex number. We then have

T

lea(@), e} ()] = et (@), 0™ ()5 + APl (), 0% (@))%
= (T rHer)

and

[ea(z) oala)lz = Mt (@), ™ (@)l + M~ (2), F (2')]5
=MIF1C(r).




Transition Amplitude must be Lorentz Invariant-Spin 0 case
A few heuristic proof From 5 Assumptions to the Theorem

Elementary Proof Using Schwinger’s Lagrangian-by Sudarshan

The only way is to choose |\| = 1, and choose commutators.
Similar thing happens to Spin-1 case!
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Transition Amplitude must be Lorentz Invariant-Spin 0 case
A few heuristic proof From 5 Assumptions to the Theorem

Elementary Proof Using Schwinger’s Lagrangian-by Sudarshan

By Gerhart Luders and Bruno Zumino (1958).
Pauli (1940) did the proof in the case of noninteracting fields. In
the presence of interaction the theorem splits into 2 parts:

» Commutation relations between two operators of the same
field. Minus BB, Plus FF.

» Commutation relations between different fields. Minus BB and
BF, Plus FF.
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Transition Amplitude must be Lorentz Invariant-Spin 0 case
A few heuristic proof From 5 Assumptions to the Theorem
Elementary Proof Using Schwinger’s Lagrangian-by Sudarshan

sth. about commutations between different fields

» the above case is not the only possible one

» interactions can be constructed in a way that commutation
relations between different fields is to a certain extent
arbitrary(by author G.L.).

» these other possibilities can be obtained by means of one or
more generalized Klein transformations.

» we only consider the same-field case here.
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Transition Amplitude must be Lorentz Invariant-Spin 0 case
A few heuristic proof From 5 Assumptions to the Theorem
Elementary Proof Using Schwinger’s Lagrangian-by Sudarshan

Five assumptions—Also spin-0 case

\{

1. The theory is invariant w.r.t to the proper inhomogeneous
Lorentz Group( 4-D trans. but no reflection)

2. Two operators of the same field at spacelike-separated
points either commute or anticommute(locality)

v

3. The vacuum is the state of lowest energy.
4. the metric of the Hilbert space is positive definite.
5. The vacuum is not identically annihilated by a field.

v

v

v
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Transition Amplitude must be Lorentz Invariant-Spin 0 case
A few heuristic proof From 5 Assumptions to the Theorem
Elementary Proof Using Schwinger’s Lagrangian-by Sudarshan

Assumption 1

The theory is invariant w.r.t to the proper inhomogeneous Lorentz
Group

It follows that the expectation value (¢(x)¢(y)), in vacuum is an
invariant of the difference 4-vector: &, = x, — y,.:

(e(X)e(y))o = 1(é)

for spacelike &, f(£) only depends on the invariant £,. From
assumption 1 we get:

(e(x), o(¥)])y = 0, Espacelike
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Transition Amplitude must be Lorentz Invariant-Spin 0 case
A few heuristic proof From 5 Assumptions to the Theorem
Elementary Proof Using Schwinger’s Lagrangian-by Sudarshan

Assumption 2

Two operators of the same field at spacelike-separated points
either commute or anticommute(locality)
we have two choices here:

[(x), ¢(y)]+ = 0,¢ spacelike
However, if we choose[g(x), ¢(y)]+ = 0, spacelike, then

(e(x), o(¥)]+)o = 0, & spacelike

Leading to:
(e(x)e(y))o = 0,& spacelike
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Transition Amplitude must be Lorentz Invariant-Spin 0 case
A few heuristic proof From 5 Assumptions to the Theorem
Elementary Proof Using Schwinger’s Lagrangian-by Sudarshan

Assumption 3

The vacuum is the state of lowest energy.
From this,

(@(X)¢(y))o = 0, & spacelike

holds not only for spacelike ¢ but also for all¢ by the method of
Analytic Continuation.
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Transition Amplitude must be Lorentz Invariant-Spin 0 case
A few heuristic proof From 5 Assumptions to the Theorem
Elementary Proof Using Schwinger’s Lagrangian-by Sudarshan

Assumption 4

the metric of the Hilbert space is positive definite.
It allows one to get:
P(x)2=0

where  is the physical vacuum.
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Transition Amplitude must be Lorentz Invariant-Spin 0 case
A few heuristic proof From 5 Assumptions to the Theorem
Elementary Proof Using Schwinger’s Lagrangian-by Sudarshan

Assumption 5

The vacuum is not identically annihilated by a field.

Thus the choose of anticommutator is untenable.

Similar proof applies to spin one-half case.

The theorem for non-Hermitian fields can also be proved in this
method!
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Transition Amplitude must be Lorentz Invariant-Spin 0 case
A few heuristic proof From 5 Assumptions to the Theorem

Elementary Proof Using Schwinger’s Lagrangian-by Sudarshan

The proof only involves Lorentz Invariance, but no Relativistic QFT.
Schwinger assumed that the kinematic part of the Lagrangian by
itself determines the spin-statistics connection!

Sudarshan considers (3 + 1)-D spacetime and imposes 4
conditions on the kinematic part of the Lagrangian for a field:

» 1.derivable from a local L.I. field theory;

» 2.in the Hermitian basis ¢ = ¢';

» 3.at most linear in the first derivatives of the field;
» 4.bilinear in the field ¢.
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Transition Amplitude must be Lorentz Invariant-Spin 0 case
A few heuristic proof From 5 Assumptions to the Theorem

Elementary Proof Using Schwinger’s Lagrangian-by Sudarshan

The kinematic terms in the Schwinger Lagrangian have the generic
form:

i . . i )
L= §(¢r¢s - ¢r¢s)Kros 5 Z (Vs - j¢r¢s)K¢s - ¢rpsMis

j=1,23

where r,s relate to the spin of the field, and K,M are corresponding
matrices of the field. L can be written as:

L= Z ¢r/\rs¢s,
rs

i o —
AN==-K Bt—EK,-(),-—M
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Transition Amplitude must be Lorentz Invariant-Spin 0 case
A few heuristic proof From 5 Assumptions to the Theorem

Elementary Proof Using Schwinger’s Lagrangian-by Sudarshan

Lagrangian must be invariant under the change of order of any two
fields b/c the order of the fields is undefined a priori and must be
irrelevant.
A property of SO(3) group:
» Representations belonging to integral spin have a bilinear
scalar product symmetric in the indices of the factors;

» Half-integral spin representations have antisymmetric scalar
products.

As a consequence, if ¢, = ¢, the affected terms in L:

Or\rstps + PsN\srpr = tPsNisdr £ drNsrs

+ for integral spin and - for half-integral spin.
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Transition Amplitude must be Lorentz Invariant-Spin 0 case
A few heuristic proof From 5 Assumptions to the Theorem

Elementary Proof Using Schwinger’s Lagrangian-by Sudarshan

Invariance of Lagrangian requires :
Ner = £/N\s

Thus the matrix M must be symmetric for integral spin field, and
antisymmetric for half-integral spin field.
BUT 77?72,

» Symmetric M corresponds to Bose-Einstein statistics.

» Antisymmetric M corresponds to Fermi-Dirac statistics.
Therefore,

» Integral spin & Bose-Einstein statistics

» Half-integral spin & Fermi-Dirac statistics
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Understanding the theorem in a topological way

Understanding the theorem in a topological way

Where does the minus come from when:
» Rotating a spin one-half particle by 2x;
» Exchanging two spin-one-half particles?
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Understanding the theorem in a topological way

Gould’s argument

A 27 rotation is not just a trivial return of everything to what is was!
Place a cup full of coffee on your hand and rotate it!
Critique from Hilborn:

» Nowhere does the spin of the object enter the question

» Nor is it clear what the twist in the arm has to do with the
change in sign of fermion’s wave function!
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Understanding the theorem in a topological way

Feynman’s models-1 rotate a particle

Charge-Monopole composite

spin % < spin 0 electric charge e + spin 0 magnetic monopole of
magnetic charge g

Its EM angular momentum

E:f?x(l?xé)d%

is independent of the separation of e and g, directed along the line
between them, and equal to eg, giving eg = % when angular
momentum assumes its minimum nonzero value.

Move e around g by 27z, the wave function acquires phase change

¢:efﬁ-dT:ef§-d§:egx2n:n



Understanding the theorem in a topological way

Feynman’s models-2 exchange two particles

Exchange 2 eg composites, call them 1 at x and 2 at y.
view this exchange as

» 1 translated from x to y in the vector potential of 2;
» 2 translated from x to y in the vector potential of 1.
The total phase change is

4 X
¢ =d1+¢2 = ef /Kz-dTHref Ay-dlp = efé-ds?: egxer =n
X y

Jian Tang Spin Statistics Theorem



Understanding the theorem in a topological way

Critique of Feynman’s models

» didn’t view elementary particles as mathematical point and
endowed it with a unphysical superstructure of magnetic field

» The exchange operation is the rigid rotation of each
composite but with no apprent internal rotations.
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Conclusion

Conclusion

» A brief review of 3 different ways to prove the spin-statistics
theorem, one of which is regarded as elementary by some
people;

» Try to understand the theorem from topological view.
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