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Q1. For x > 0 we have exactly the same differential equation as the normal har-
monic oscillator. The only difference in this case is with the boundary conditions.
In this case we have the condition that the wavefunction should disappear at x = 0.
This force half of our eigenfunctions be invalid. The only wavefunctions that survive
are the odd ones |2n+1〉 and so the allowed energies are 2n+1+1/2 = (4n+3)/2.

Q2. The ground state wavefunction is

ψ(x) = A exp
[
−mωx
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2~

]
.(1)

So normalizing the wavefunction we have

1 = |A|2
∫ ∞

−∞
ψ∗(x)ψ(x)dx(2)

= |A|2
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]
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exp[−y2]dx(4)
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⇒ A =
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~π

)1/4

(6)

The harmonic oscillator potential is

V (x) =
1
2
mω2x2(7)

The classically forbidden region corresponds to when the particles energy is less
than the potential energy. The region this correponds to for the ground state is
when

1
2
mω2x2
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So the probability of being in the non-classical region is

Pquantum =
∫ −xc

−∞
|ψ(x)|2dx+

∫ ∞

xc

|ψ(x)|2dx(10)

= 2
∫ ∞

xc

|ψ(x)|2dx(11)

= 2
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= 2
1√
π

∫ ∞

1

e−y2
dy(13)

= 1− Erf(1) = 0.1573(14)

Q3. We have the harmonic oscillator state

|ψ(t)〉 =
1√
2

(
|0〉e(−iωt)/2 + |1〉e(−3iωt)/2

)
.(15)

So we find that

〈E〉 = 〈H〉 = 〈ψ(t)|~ω(a†a+
1
2
)|ψ(t)〉(16)
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〈x〉 =
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〈ψ(t)|(a† + a)|ψ(t)〉(18)

=
1
2

√
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(〈0|a|1〉e−iωt + 〈1|a†|0〉eiωt)(19)
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〈p〉 = i

√
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2
〈ψ(t)|(a† − a)|ψ(t)〉(21)

=
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(〈0|a|1〉e−iωt − 〈1|a†|0〉eiωt)(22)

=

√
mω~

2
sinωt.(23)

So we see that in the phase plane p− x the expectation values move in an ellipse,
while the energy is just the average of the ground and first excited energies.

4. The probability density for this state is then just

P (x) = |ψ(x, t)|2(24)

=
(mω
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~
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√
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)
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5. We have the Hamiltonian

H = ε1a
†a+ ε2(a+ a†),(27)

as H = H† both ε1 and ε2 are real. Now let us consider the standard hamiltonian
and position operators

H0 = ~ω(a†a+
1
2
)(28)

x =

√
~

2mω
(a+ a†)(29)

in which case we find that

H =
ε1
~ω

H0 −
ε1
2

+ ε2

√
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~
x(30)

=
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(
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1
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)
− ε1

2
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√
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~
x(31)

=
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~ω

(
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1
2
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(
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√
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x

))
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2
(32)
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2
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(
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√
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)2
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ε1
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2
.(33)

So changing variable from x to y = x+ ε2
ε1

√
2~
mω we have

H =
ε1
~ω

(
P 2

y

2m
+

1
2
mω2y2

)
− ε1

2
− ε22
ε1

(34)

= ε1b
†b− ε22

ε1
(35)

where b† is the creation operator of the new harmonic oscillator. Infact you can
show that b = a + ε2

ε1
. So the energy in this case will be En = ε1n − ε22

ε1
and the

eigenstates would be same as the usual harmonic oscillator except they would all

be centered at the point x = ε2
ε1

√
2~
mω


