Pulsar Board: General Checkout Procedures

Angela Little, Seattle Pacific U.

Abstract:

Pulsar Boards are currently used as part of the Level 2 Trigger system in CDF and are being used in the L2 Trigger Upgrade. Since additional boards will be produced over the next few years, it is important to have proper documentation on how to test new boards and maintain ones currently in use. One of the goals of this document is to allow those less familiar with the setup the ability to test Pulsar Boards. Testing is done with a special version of test firmware which was developed during the prototyping stage and has been used for the checkout of production boards. Much of the information included involves the setup of the teststand, from plugging in and cabling up the boards to running specific tests on them. The procedures outlined in this document give one the ability to test all the board interfaces as well as the hardware. For the purposes outlined above, this document gives an introduction to Pulsar boards in addition to outlining specifics on how to run general tests.

Outline of Contents:

I. Introduction to the Pulsar Board

1.1 Main features of the Pulsar board

1.2 Description of VME: the Pulsar user interface

1.3 Terms to know

1.4 Resources

1.5 Check List for succession of steps

II. Teststand Setup

2.1 Pre-Steps

2.2 Oscillators and Dip Switch

2.3 Configuring and Loading Firmware

2.4 Hardware Setup

III. Testing Procedures
3.1 Setting up the Testing Environment

3.2 Internal Testing

3.3 Interface Testing
IV. Experts Contact List

Introduction to the Pulsar Board

1.1 Main Features of the Pulsar Board

Ability to Sink and Source Many Data Types

The Pulsar Board was designed to take in a variety of data types and output them into S-link format. The S-link formatted data can then be read by either another Pulsar board or a CPU. By the use of mezzanine cards to take in optical data and LVDS cable interfaces, the Pulsar board can work with all of the current data types coming into the Level 2 Trigger. It is also considered a general purpose board since it is compatible with data types from detectors both inside and outside of CDF.

Self-Testability

It is important that the Pulsar Boards have the feature of self-testability so that the current system can run while the upgrade takes place. Most boards must be placed into their normal position in-between downstream and upstream data to be tested. Pulsar boards, however, can act as both a sink and source of data. One can set up a teststand with two Pulsar boards, one as a Tx and the other as an Rx, to test all of the Rx interfaces. While the internal hardware tests and some of the interface tests can be run with the Rx alone, the Tx board is needed to transmit data across the optical fiber and the Level 1 LVDS cable interfaces.

Mezzanine Card Usage

The Pulsar boards make use of three types of mezzanine cards: Taxi, Hotlink, and S-link. Mezzanine cards come in both Rx and Tx types and essentially sink or source optical signal data, respectively. Other types of mezzanine cards are currently being developed to be used with the Pulsar board as part of the XFT and SVT upgrades.
Hotlink and Taxi Tx cards receive 8-bit words from the control FPGA on the Pulsar board and serialize those bits, sending them out as an optical signal. Rx cards then receive the optical signal, deserialize it, and send out 8-bit readable words to the Pulsar board. S-link works in a similar fashion, but with 32-bit words.

The three types of mezzanine cards above refer to different protocols. While all three protocols work with fiber-optic data, the components on each card are different. Because of the difference in components, each card works with optical data in a unique way and at varying speeds. Taxi and Hotlink cards are used in the Level 2 Trigger Upgrade system to receive optical data from the Level 1 Trigger. S-link cards are used to send data from the Pulsar board to a Merger Pulsar board or to a CPU for running of decision algorithms. For more information regarding the different protocols, see the Resources section below.

[image: image27.png]
Figure 1.

The Pulsar board can sink and source data streams via LVDS cables (TS, SVT/XTRP, L1) and optical fiber cables (Hotlink, Taxi). Once the Pulsar board has received data, it can format the data via its FPGA’s to be sent to another Pulsar or CPU. The way in which the Pulsar board sends out its data is through S-Link mezzanine cards, which can be connected to the back of the board via the AUX card.

1.2 Description of VME: the Pulsar User Interface

The VME is the way in which a control CPU can communicate with the Pulsar board in the testcrate. VME bus (Versa Module Europa) is a flexible open-ended bus system which makes use of the Eurocard standard. Every device can be viewed as an address, or block of addresses. A resource manager is required to handle the interrupts. The VME bus is a TTL based backplane which, although the system is asynchronous, sets the data transfer speed to approximately 20 Mbytes per second (Information from website below).

For more information regarding VME, see:

http://www-esd.fnal.gov/esd/catalog/intro/introvme.html
1.3 Terms to Know

Firmware: Code that is written into the FPGAs. The firmware on the FPGAs in the Pulsar board give it the ability to process the data types that are received.

FPGA: Field Programmable Gate Array. FPGAs are chips that perform a special function designated by the firmware that is configured to them. FPGAs differ from other chips by the fact that they can be reprogrammed as many times as needed.
LVDS: Low Voltage Differential Signal. LVDS is a type of standard copper cable used in the CDF detector to transmit data.

RX: Abbreviation of Receiver

SRAM: Static Random Access Memory is a type of fast and reliable memory. It is called SRAM in contrast to DRAM (dynamic RAM) since it does not need to be refreshed. This means that it can retain data without a regular clock signal.

TX: Abbreviation of Transmitter

1.4 Resources

Main Pulsar Webpage:

http://hep.uchicago.edu/~thliu/projects/Pulsar/
CERN S-link Homepage:

http://hsi.web.cern.ch/HSI/s-link/
More information about Taxi Protocol:

http://hep.uchicago.edu/~thliu/projects/Pulsar/other_doc/TAXIchip.pdf
More information about Hotlink Protocol:

http://hep.uchicago.edu/~thliu/projects/Pulsar/other_doc/cy7b933.pdf
1.5 Checklist for Succession of Steps

· Visual Check Over

· Placement of Jumpers

· Table Top Power Up Test (EXPERTS ONLY)

· Fuse Placement and Check

· Placement of Clock Oscillators and Dip Switch

· Check if Firmware Program Recognizes all Devices

· Load Firmware to Devices

· Plug in Board to Testcrate
· Running Internal Tests

· Mezzanine Card Placement

· Cabling Setup

· Computer Test Environment Setup
· Running Interface Tests

· Done!

Teststand Setup

2.1 Pre-Steps

Visual Check Over

When testing a new Pulsar board, a previously tested board acts as the Tx in the setup. The previously tested board is also useful since it allows the ability to visually check over the new Pulsar board with a correct example. It is very important to make sure that all of the chips have been placed and oriented properly since a misplaced chip could potentially do a lot of damage if a board is plugged in.

In the production batch of Pulsar boards, there was one case in which a chip was noticed to be rotated incorrectly. The chip was resoldered and the board passed all of the tests.

Correct Placement of Jumpers

There are seven jumpers to place. All jumpers are on the top side of the board (right side face if the board is held upright).

 The first three jumpers are needed on the left side of the board. Underneath each series of three EPC2’s, there is a component called JDTI1, JDTI2, or JDTI3 (JDTI3 is not outwardly labeled on the board). This component has 4 rows of 3 pins. One jumper should be placed on the leftmost column on the bottom two pins (see fig. 2).

Two more jumpers are needed on the bottom right hand corner of the board. There are two components, one labeled P3clk2 and the other P3clk1. Each component has 3 pins in a column. Place the jumper on the lower two pins in each case (see fig. 2).

The last two jumpers are needed on the mid/upper right hand side of the board. There are two components, P2dir1 and P2dir2 (P2dir2 is not outwardly labeled on the board). Each has 3 pins in a column. Place the jumper on the upper two pins in each case (see fig. 2). If the board is new, it is important to cut the bottom pin. The extra pin is for applications outside of CDF.

[image: image2.emf]Figure 2.
Correct Placement of Jumpers

Power Up Test and Fuse Check
Voltage across the three fuses on the board need to be checked before the board is plugged into a testcrate. Contact an expert (Ted Liu or Burkard Reisert) for this step.

There are three fuses to check on new boards (see fig. 3). Make sure that the fuse labeled F0_P055V is 10 amps. Both the F_3_3V and F2_5V fuses should be 5 amps.

[image: image3.emf]
Figure 3.
Fuse Locations

2.2 Oscillators and Dip Switch

Two clock oscillators need to be placed on the board. A 40 MHz oscillator should be placed at OSC1 and a 50 MHz oscillator should be placed at OSC2 (fig. 4). Note that this setup is for the test firmware only. If the board has not been already named, use the dip switch to assign it a number.

[image: image4.emf]50

MHz

40

MHz

Dip

Switch

Figure 4.
Dip Switch and Clock Oscillators Location

2.3 Configuring and Loading Test Firmware
Test firmware must be loaded onto the Pulsar board before assessing its capabilities in the teststand. Making sure that the chips are configured properly is an extremely important step in ensuring the proper operation of Pulsar boards. Firmware must be loaded before any of the hardware setup takes place. You should contact an expert the first time you load the firmware to make sure it is done correctly.

[image: image1]
General Setup:
Make sure that the control box located next to the teststand computer is switched to L1 (see fig. 5). Turn off the power to the testcrate and insert the board that will need to be programmed. Once the board has been properly plugged in, power up the testcrate.
[image: image5.jpg]
Figure 5.

Switch Box

Connections for Programming Chips:
There are four JTAG connectors located on the board which are connected to the FPGAs, EPC2s, and VME for programming purposes (see fig 6.). A parallel cable can be connected from the teststand computer to any one of the JTAG connectors via an Altera ByteBlaster MV (see fig. 6), which converts the parallel cable to JTAG.
Connect the cable first to the lower left-hand chip, corresponding to the Control FPGA. Notice that the Altera ByteBlaster connector has a notch on one end that can be matched up to an outline drawn around the JTAG connector on the board.

[image: image6.emf]DataIOFPGA 1

DataIOFPGA 2

Control FPGA

VME

EPC2s

EPC2s

EPC2s

Figure 6.
Locations of JTAG connectors

Firmware Program for FPGAs:

Open the Quartus II, Version 1.1 program, found in the START menu under PROGRAMS\ALTERA.

Check to See if Firmware Program Recognizes All Devices:

Before programming the chips, it is necessary to make sure that everything is functioning properly between the board and teststand computer.

Once the Quartus II program has been opened, click on OPEN PROGRAMMER, located under PROCESSING on the top toolbar menu. A new window will pop up. Click on the box named AUTO DETECT (see fig. 7). Four devices should be found (3 EPC2’s and the FPGA).

If all four devices have been found, check all three FPGA JTAG connectors in the same way.

[image: image7.png]
Figure 7.
Checking for devices

Configuring Firmware to VME First (for new boards):
This process should only occur once on brand new boards. See figure 8 for screen shot of MAX+Plus II program.
Open the MAX+PlusII 10.2 Programmer Only program, found in the START menu under PROGRAMS.

Connect the parallel cable to the VME JTAG connector on the upper right hand corner of the board (see fig. 6).

Click on PROGRAMMER under MAX II Plus II on the top toolbar menu.

Make sure that the file selected is vme_interface.pof. If it is not, click on SELECT PROGRAMMING FILE under FILE on the top toolbar menu and locate the file to be selected.

Click on the PROGRAM button in the Programmer Window. Once a message appears saying ‘Programming Complete’, click on the VERIFY button. A message ‘Verify Successful: No Errors’ will appear and the process is then completed.

[image: image8.png]
Figure 8.
VME Firmware Programming

Configuring Firmware to FPGAs:

Go back to the Quartus II program. The order in which the three FPGAs are programmed does not matter.

Connect the parallel cable to one of the JTAG connectors for the FPGAs.

Once the Quartus II program has been opened, click on OPEN PROGRAMMER, located under PROCESSING on the top toolbar menu. A new window will pop up. Click on the box named AUTO DETECT (see fig). Four devices should be found (3 EPC2’s and the FPGA).

Since a file has not been selected for any of the devices detected, right click on <none> under the FILE heading in the window and select CHANGE FILE. The firmware folder will have four files, filename.pof, filename1.pof, filename2.pof, and filename.sof. Change the first EPC2 to filename.pof, the second to filename1.pof, and the third to filename2.pof. Change the FPGA to filename.sof.

Under the PROGRAMMING/CONFIGURE heading, check the boxes for all the chips. Under VERIFY, check all the boxes for the EPC2s. Click the START button and wait for the message ‘Programming Completed’ to be reported (see fig. 9).

[image: image9.png]
Figure 9.
Successful programming of FPGAs and EPC2s

Possible Problems Configuring:

If configuring the firmware fails, check the cable connection. Most likely the connectors are not plugged in properly. In the past, the notch on the ByteBlaster connector has not been lined up with the notch on outline of the JTAG connector. At other times, only half of the JTAG pins were connected to the ByteBlaster.
 2.2 Hardware Setup
Once the firmware has been properly configured to the board, hardware setup can begin. Power to the crate should be turned off whenever plugging or unplugging boards. However, the power can stay on when plugging in LVDS cables or optical fibers.

Mezzanine Card Placement
Once the four Rx Mezzanine cards have been placed on the Pulsar board, they will need to be screwed in. Each card has four screw holes. To minimize stress on the board, it is important to screw in diagonally. That is, after the placement of the first screw, make sure that the next screw is placed diagonally rather than directly across.

There is one jumper located on each mezzanine card that corresponds to the clock that is used. Either a local clock or the global CDF clock can be used. Make sure that the jumper on each of the four cards on both the Rx and Tx boards is in the same position.
Plugging in the Boards

Make sure the power to the crate is off. Slide in the Tx and Rx boards two slots away from each other. If possible, place the Rx board in slot 21 for easy access.

Connecting LVDS Cables and Optical Fibers

If you have not run interface tests in the past, it may be preferable to connect cables one at a time for a given interface while running actual tests. This will ensure that if problems with a test occur, you will know which cable should be checked. If this is the case, skip this section for now and refer back to it during the Interface Testing procedures. If you are more familiar with the setup, it may be easier to connect all of the cables at once before running further tests.

SVT Cable

One SVT cable is needed for an output to input on the Rx board. It is connected on the Rx board from XTRP/SVT IN to XTRP/SVT out which are located at the bottom of the front panel. Each end of the cable has a small white arrow that can be matched up on the board interface. Looking closely at the SVT interface on the board, there is small white lettering and a white arrow on the right side. Make sure that the two arrows match up on each interface so that the cable is properly connected.

[image: image10.emf] [image: image11.jpg]
Figure 10a. SVT Connection Figure 10b. SVT Cable

[image: image12.emf]
Figure 10c.

Arrow on SVT cable that should be connected to arrow on interface

L1 Cables

Two L1 cables are needed to transmit from the Tx to Rx board. One end of each cable is connected to the right side face of the Tx (see Fig. 6). When plugging in the cables on the Tx board, the board may need to be pulled out from the teststand part way. Make sure to turn off the power when the board is unplugged. The other ends are placed into the TRIG connections on the front panel of the Rx board (see Fig. 7). The leftmost connector on the Tx must be connected to the lower TRIG connector on the Rx (and the rightmost on the Tx to the higher TRIG connector on the Rx).

[image: image13.jpg]
Figure 11a. L1 Cable
[image: image14.png]
[image: image15.emf]
Figure 11b. L1 Cable connections on Tx Figure 11c. L1 Cable connections on Rx

TS cable

One TS cable is needed for an output to input on the Rx board. One end of the cable is plugged into the right side face of the Rx board (see fig. 9). The other end is connected to the topmost TSI interface on the Rx front panel (see fig. 10). The Rx board may need to be unplugged and pulled out slightly so that the cable can be connected on the front side. Make sure the power to the crate is off if the board needs to be pulled out.

[image: image16.jpg]
Figure 12a. TS cables

[image: image17.emf]TS

Cable

Figure 12b. TS interface connection
Optical Fiber Cable for Taxi/Hotlink Mezzanine Cards
Be careful not to look directly into optical inputs or outputs when the board is plugged in.

8 duplex fiber cables are needed to connect 4 mezzanine cards (16 channels total). If cables are not already labeled, it is useful to number each connector 0-15 for easy identification with amongst so many cables. Connect each Tx mezzanine card output to the corresponding Rx mezzanine card input. The topmost channel on the Tx should be connected to the topmost channel on the Rx. Continue downward in a similar fashion, connecting across. See the TestHotlink Interface Test for more diagrams if needed.
Note: It is important when working with optical fibers and inputs to make sure that they remain capped when not in use. Uncapped fibers can become more lossy over time since dust can build up. In addition, caps act as a safely precaution to make sure that the transmitted laser light does not harm someone’s eyes.

[image: image18.jpg]
Figure 13. Hotlink/Taxi Optical Fiber Cable

Optical Fiber Cable for S-link Mezzanine Cards

1 duplex fiber cable is needed to form a loop connecting the S-link LSC with the S-link LDC on the AUX card.

[image: image19.jpg]
Figure 14. S-link Optical Fiber Cable

Testing Procedures

3.1 Setting up the Test Environment

Description in both words and commands of how to set up the computer to run tests.

Obtaining the Necessary Files

Create a code directory on your account on the teststand computer. Copy necessary code files located on b0dap16 at ~alittle/pulsar/code into your code directory.

Setup for Running Tests

You must perform this procedure each time you turn on the crate.

Command Example:

Explanation of Commands:

First, set up the readout code environment. Load the object files to the crate controller (name is located on front panel of control CPU in testcrate, e.g. tstxft2). Lastly, log into the crate controller (once logged in, CTRL-H should be used in place of the backspace key). Once these three steps have been accomplished, the test commands in section 3.2 can be run. If power to the crate needs to be turned off, make sure to first log out of the crate controller by typing the command ‘logout’.

Compiling Instructions

If you are unsure whether or not object files have been compiled from the most recent version of the code (or if you have made some changes), you will want to compile. Before compiling, logout of the crate controller.

Command Example:

Explanation of Commands:

Log into b0dap72 or an equivalent teststand computer. Change directory to the location where code is located. Setup the readout code environment and the ability to compile the code. Lastly, compile the code in the file that has been changed.

3.2 Internal Tests

Since interface tests rely on the internal capabilities of the board, internal tests should be run first. Commands are written in the proper executable form with regard to capitalization. Pertinent characteristics of the example output have been highlighted and are explained in more depth under the ‘Details on Passing a Test’ section.

Crash Information:

Sometimes a test may be overloaded when trying to report errors. If this occurs, first attempt to kill the test by CTRL-C (Hold down the Ctrl key and then press C). If the window freezes, kill the window and follow the test setup again. Previous tests that have been run are still valid. After setting up the test environment again, begin after the last completed test.

Command 1: scanCrate()
Description:

The main goal of scanCrate() is to determine if Tx and Rx boards are properly connected to the backplane and if the readregister on each FGPA is functioning properly. It uses code located in the object files to output where the boards are connected.

Example Output:

Details on Passing a Test:

The scanCrate() test has been passed if all the boards in the crate have been identified by the program as being present and programmed. The scanCrate() command will scan each slot in the testcrate and either report that no board has been found, which looks like (FISION: S_errno_EIO (0x5): VME BERR received!) or that a board is present. The boards being tested should have a name such as ‘Pulsar 60’ and nonzero numbers for the FPGA readregisters such as (CTRL: 0521017b, DataIO1: 04070006, DataIO2: 0407d10). There may be other boards in the teststand that have not been programmed with the Pulsar test firmware. If this is the case, “unidentified” boards will be found and may be ignored.

Possible Problems:

The only observed problem with scanCrate() occurs when a board is not identified since it has not been properly plugged in. If the test does not find one of the boards, remove the board from the crate and try plugging it in again.

If the test of the board does not return what is expected, check to make sure that the right firmware has been properly configured to the board.

Visual Explanation of Test:

[image: image20.emf]Registers

Registers

Registers

Control FPGA

DataIOFPGA 1

VME

chip

DataIOFPGA 2

ROM

Figure 15.

For scanCrate(). Each read register on the three FPGAs are scanned by the VME for the firmware version ID, which is then reported back to the control CPU via the P1 backplane. The ROM on the Control FPGA is also scanned by the VME to determine the board name, serial number, and ID. The VME then communicates this data back over the P1 backplane.

Command 2: TestRAM()
Description:

The main goal of TestRAM() is to make sure that the FPGAs on the board have been properly programmed and that the SRAM is functioning correctly.

Extra Information:

If the Rx board is not plugged into slot #21, the code in file ram.test will need to be changed so that TestRAM() checks the correct board.

Example Output:

Details on Passing a Test:

There should be zero VME Errors for each of the 5 chips that are tested (0 VME ERRORS). If there are no errors, the last line of the test output should have a value of zero (value = 0 = 0x0).

Possible Problems:

If the VME Errors are not reported as zero, first try checking to make sure that there are clock oscillators plugged into the board. Also make sure to check that the board is plugged in correctly.

Visual Explanation of Test:

[image: image21.emf]RAM

RAM

RAM

Control FPGA

DataIOFPGA 1

VME

chip

DataIOFPGA 2

SRAM

SRAM

Figure 16.

For TestRAM(). The Control CPU sends test pattern words through the VME to be written on the RAM on each of the 3 FPGAs and the SRAM on the Data I/O FPGAs. The VME then reads back the words to see if the RAM and SRAM correctly stored the data.

Command 3: TestIntCom(A,B,C,D)

Description: The goal of TestIntCom() tests the internal communication lines on the board. In this test, the control CPU will communicate with all the boards in the crate and reset all signals in the internal communication lines (so that none of the other boards will interfere with the test). It then checks whether the Rx board can properly read a pattern written to it.

Command Information:

A: Number of events/iterations

B: Pattern index

C: Rx location

D: Rx location

Example Sequence of Commands:

*Note that the code only accepts commas as separating parts of the command. Enter large numbers without commas.

>TestIntCom(10,2,21,21)

If there are errors, try running a few times. When there are no errors, continue.

>TestIntCom(100000,1,21,21)

Example Output:
10 Events, Pattern 2

Details on Passing a Test:

TestIntCom() checks the internal communication lines of each slot in the testcrate and if no board is present in a slot, (FISION: S_errno_EIO (0x5): VME BERR received!) is reported. If a board is present, and there are no errors in the internal communication lines, “status 0” will be reported. Lastly, the total error count must be zero.

Possible Problems:

No Pulsar board has failed this test in the past. If an error is observed, however, it will be necessary to look into the schematics and check for missing resistors or other components.

Visual Example:

[image: image22.emf]Read

Registers

Registers

Read/Write

Registers

Control FPGA

DataIOFPGA 1

VME

chip

DataIOFPGA 2

Read

Registers

FPGAs

Connected

through P2

Figure 17.

For TestIntCom(). The VME writes one 5-bit word to the write register on the Control FPGA. Since the write register is connected to the read registers on all the FPGAs through the P2 connection, the VME can then scan all 3 read registers to see whether they have the word. The Control FPGA stores all 5-bits while the two Data I/O FPGAs store only the lower 4-bits.
Information Regarding Commands with Event Numbers

For these commands to work properly, they should begin with a preliminary test of a small number of events and regular pattern. Once the more basic test has been run, a longer test with random patterns can be attempted.
First Test: 10 events with pattern 2

Second Test: 100,000 events with pattern 1 for all tests except TestHotlink

Second Test for TestHotlink: 250,000 events with pattern 1

Explanation of pattern index:

1: Random generated pattern

2: Regular ramp pattern

3: One fiber with random pattern

4+: These are patterns made for tests which are no longer necessary.

3.3 Interface Tests

The capability to absorb many data types must be thoroughly tested since it is one of the Pulsar board’s main objectives. Once the internal parts of the board have been found to be functioning properly, interfaces using LVDS cables and optical fibers can be examined. Both the interface and internal test explanations will follow the same format.

Command 1: TestSVT(A,B,C,D,E)

Description: The goal of TestSVT() is to determine whether the SVT output to input is functioning properly. It sends a test pattern across the SVT cable and checks that the board gets the proper pattern.

Connect Cable: SVT Cable
Command Information:

A: Number of events

B: Pattern index

C: Level 1 accept mode

D: Rx location

E: Rx location

Example Sequence of Commands:

>TestSVT(10,2,1,21,21)

If there are errors, try running a few times. When there are no errors, continue.
>TestSVT(100000,1,1,21,21)

Example Output:
10 Events, Pattern 2

Details on Passing a Test:

The TestSVT() test has been passed if there are zero errors.

Possible Problems:

If the SVT cable has not been properly plugged in, the test pattern will not be properly transmitted and Data0, Data1, and Data2 will have 8-bit words of all e’s, signifying that no pattern was received.

Visual Explanation of Test:

[image: image23.emf]SVT cable

SVT data out

SVT data in

SVT data in

SVT data in

Control FPGA

DataIOFPGA 1

DataIOFPGA 2

RAM

VME

chip

Receiver FIFO

Receiver FIFO

Receiver FIFO

Figure 18.

Input data is first uploaded to the Control FPGA RAM using the VME. The Control FPGA sends SVT data out from the SVT output. All FPGAs then receive the incoming SVT data. Lastly, data is read from each FPGA using the VME. TestSVT() checks that the sent and received SVT data match.
Command 2: TestTS(A,B,C)

Description:

The main goal of TestTS() is to determine if the trigger supervisor interface (TSI) is functioning properly. The TSI gives the Pulsar board the ability to communicate with the global CDF trigger.

Connect Cable: TS Cable
Command Information:

A: Number of events

B: Pattern index

C: Rx location

Example Sequence of Commands:

>TestTS(10,2,21)

If there are errors, try running a few times. When there are no errors, continue.
>TestTS(100000,1,21)

Example Output:

10 events, pattern 2

Details on Passing a Test:

TestTS() has been passed if there is a zero error count.

Possible Problems:

If the cables have not been properly plugged in, there will be an error for each event since no pattern can be properly sent across the cables.

Visual Explanation of Test:

[image: image24.emf]Control FPGA

VME

chip

TS

cable

In/out

Registers

Figure 19.

TestTS() takes place only on the RX board. Data is sent and received through the TS Cable by the Control FPGA. The data which is received is then checked with the sent data to make sure that it matches.
Command 3: TestL1(A,B,C,D,E)

Description:

The main goal of TestL1() is to test the Level 1 trigger bits. The board should be able to receive the L1 signal and send it out in the same format.

Connect Cable: L1 Cables
Command Information:

A: Number of events

B: Pattern index

C: Level 1 accept mode

D: Tx location

E: Rx location

Example Sequence of Commands:

>TestL1(10,2,1,15,21)

*Note that for TestL1(), it is likely that it will fail the first time, and could fail up to five times. This is typical. If there are errors, try running a few times. When there are no errors, continue. This is a feature of the old test firmware.
>TestL1(100000,1,1,15,21)
Example Output:

10 events, pattern 2

Details on Passing a Test:

TestL1() should have zero bad events and a zero error count.

Possible Problems:

The problem that has occurred most in the past is having the L1 cables switched. If a 10/10 bad event count is seen, try switching the cables. If <10/10 bad events are seen, the cables are likely hooked up properly. Try running the first test a few more times and the bad events should cease.

Visual Explanation of Test:

[image: image25.emf]DataIOFPGA 1

VME

DataIOFPGA 2

Control FPGA

Input register

VME

Control FPGA

Output

RAM

Input register

Input register

Figure 20.
For TestL1(). First, the Control FPGA on the Tx board sends out data from the internal RAM via the L1 cables. Data is received by all three FPGAs on the Rx board and this data is subsequently read out through the VME. TestL1() checks to make sure that the data transmitted is the same as that which is received.
Command 4: TestHotlink(A,B,C,D,E)

Can be used with TAXI or Hotlink Protocol
Connect Cable: Optical Fiber Cables
It is important not to sharply bend the fibers since this can create signal losses. Never bend a fiber into a bundle of diameter smaller than about 4 inches. Make sure all fibers are the same length.

Description:

The goal of TestHotlink() is to determine whether all four mezzanine cards (either taxi or hotlink – the program will test either) are properly receiving an optical signal pattern.

Command Information:

A: Number of events

B: Pattern index

C: Level 1 accept mode

D: Tx

E: Rx

Example Sequence of Commands:

>TestHotlink(1,2,1,15,21)

If there are errors, try running a few times. When there are no errors, continue.
>TestHotlink(250000,1,1,15,21)

Details on Passing a Test:

If there are zero errors reported, TestHotlink() has been passed.

Possible Problems:

It is a possibility that a bit in the transmitted pattern can get stuck. If this occurs, first switch the Rx mezzanine card from the channel with the stuck bit with another Rx mezzanine card on the board. If the stuck bit then occurs on the channel that the card was moved to, the mezzanine card has a problem. If the stuck bit problem still occurs on the same channel despite switching the mezzanine card, the board itself has a problem.
Another possible problem that is know to occur is called a “fiber offset”. If this happens, try running TestHotlink() with a pattern index number 3 and this should solve the problem. This is a feature of the Rx test firmware which assumes that all four fibers are in phase.
Visual Explanation of Test:

[image: image26.emf]TX

TX

TX

TX

16x

RX

RX

RX

RX

Figure 21.
For TestHotlink(). Test Patterns are transmitted from Tx to Rx over optical fibers.
Command: TestHOLA(A,B,C,D,E)
Description: To test the S-link interface, a “loop-back” test is run in which the HOLA LSC (Link Source Card) and HOLA LDC (Link Destination Card) are connected through optical fibers. A test pattern is sent to the LSC from the control FPGA, through the fiber, to the LDC. The pattern is then sent back to the control FPGA and the VME is able to read it out to determine if it matches.
Command Information:

A: Number of events

B: Pattern index

C: Level 1 accept mode

D: Tx

E: Rx

Example Sequence of Commands:

>TestHOLA(10,2,1,21,21)

If there are errors, try running a few times. When there are no errors, continue.
>TestHOLA(100000,1,1,21,21)

Example Output:

Details on Passing a Test:

There should be zero errors and zero bad events.

Possible Problems:
If a test reports errors, make sure that the AUX card in the back of the crate is plugged into the same slot as the Pulsar board in the front of the crate.

Experts Contact List
Design/Hardware
Ted Liu: thliu@fnal.gov
Firmware Details

Sakari Pitkanen: sakari@fnal.gov
Testing Procedure Details (Software and Hardware)
Burkard Reisert: reisert@fnal.gov

>cd code directory

>setup fer

>./vxtest cratecontrollername

>vxlogin cratecontrollername

>ScanCrate()…etc.

>

>kinit

>ssh b0dap72

>cd to code location

>setup fer

>setup –q ppc vxworks

>vxmake file_to_change.c

Unidentified board found from slot 2

IDPROM: 0042 001 TRACER__V2.1A

Readonly regs - CTRL: 00000000, DataIO1: 00000000, DataIO2: 00000000

FISION: S_errno_EIO (0x5): VME BERR received!

FISION: S_errno_EIO (0x5): VME BERR received!

Unidentified board found from slot 5

IDPROM: 0023 051 Finder SL 2/4 Ver. 4.0

Readonly regs - CTRL: 00000000, DataIO1: 00000000, DataIO2: 00000000

FISION: S_errno_EIO (0x5): VME BERR received!

FISION: S_errno_EIO (0x5): VME BERR received!

FISION: S_errno_EIO (0x5): VME BERR received!

FISION: S_errno_EIO (0x5): VME BERR received!

FISION: S_errno_EIO (0x5): VME BERR received!

FISION: S_errno_EIO (0x5): VME BERR received!

Pulsar 60. found from slot 12

IDPROM:

Readonly regs - CTRL: 0521017b, DataIO1: 04070006, DataIO2: 0407d101

FISION: S_errno_EIO (0x5): VME BERR received!

FISION: S_errno_EIO (0x5): VME BERR received!

Pulsar 61. found from slot 15

IDPROM:

Readonly regs - CTRL: 0521017c, DataIO1: 04070006, DataIO2: 04070006

FISION: S_errno_EIO (0x5): VME BERR received!

FISION: S_errno_EIO (0x5): VME BERR received!

Pulsar 32. found from slot 18

IDPROM:

Readonly regs - CTRL: 102203df, DataIO1: 04071010, DataIO2: 0407d101

FISION: S_errno_EIO (0x5): VME BERR received!

FISION: S_errno_EIO (0x5): VME BERR received!

Pulsar 33. found from slot 21

IDPROM: Z

Readonly regs - CTRL: 102203e0, DataIO1: 04071010, DataIO2: 04071010

value = 0 = 0x0

Test SLOT FPGA RAM MODE nTest nWord iPat iPar1 iPar2

1: 21 CONTROL INT WR 1000 256 3 00000000 ffffffff

0 VME ERRORS, Normal End of TEST

2: 21 DATAIO1 INT WR 1000 256 3 00000000 ffffffff

0 VME ERRORS, Normal End of TEST

3: 21 DATAIO1 SRAM WR 2 131072 3 00000000 ffffffff

0 VME ERRORS, Normal End of TEST

4: 21 DATAIO2 INT WR 1000 256 3 00000000 ffffffff

0 VME ERRORS, Normal End of TEST

5: 21 DATAIO2 SRAM WR 2 131072 3 00000000 ffffffff

0 VME ERRORS, Normal End of TEST

number of tests 5

value = 0 = 0x0

slot 15 status 0

slot 16 status 0

FISION: S_errno_EIO (0x5): VME BERR received!

slot 17 status 0

FISION: S_errno_EIO (0x5): VME BERR received!

slot 18 status 0

slot 19 status 0

FISION: S_errno_EIO (0x5): VME BERR received!

slot 20 status 0

FISION: S_errno_EIO (0x5): VME BERR received!

slot 21 status 0

VISION status opening ts_tx_slave 0

write 00000000

read Cont 00000000

read IO1 00000000

read IO2 00000000

loop 0

Error count 0

value = 0 = 0x0

slot 03 status 0

FISION: S_errno_EIO (0x5): VME BERR received!

slot 04 status 0

FISION: S_errno_EIO (0x5): VME BERR received!

slot 05 status 0

slot 06 status 0

FISION: S_errno_EIO (0x5): VME BERR received!

slot 07 status 0

FISION: S_errno_EIO (0x5): VME BERR received!

slot 08 status 0

FISION: S_errno_EIO (0x5): VME BERR received!

slot 09 status 0

FISION: S_errno_EIO (0x5): VME BERR received!

slot 10 status 0

FISION: S_errno_EIO (0x5): VME BERR received!

slot 11 status 0

FISION: S_errno_EIO (0x5): VME BERR received!

slot 12 status 0

slot 13 status 0

FISION: S_errno_EIO (0x5): VME BERR received!

slot 14 status 0

FISION: S_errno_EIO (0x5): VME BERR received!

FISION: S_errno_EIO (0x5): VME BERR received!

read ID_PROM: : S_errno_EINVAL

VISION status opening svt_slave 0

 TestPat1

 00000000 00111111 00222222 00333333 00044444 00155555 00266666 00377777

 00088888 00199999 002aaaaa 003bbbbb 000ccccc 001ddddd 002eeeee 007fffff

 SVT FIFO Data0

 00000000 00111111 00222222 00333333 00044444 00155555 00266666 00377777

 00088888 00199999 002aaaaa 003bbbbb 000ccccc 001ddddd 002eeeee 007fffff

 ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

 SVT FIFO Data1

 00000000 00111111 00222222 00333333 00044444 00155555 00266666 00377777

 00088888 00199999 002aaaaa 003bbbbb 000ccccc 001ddddd 002eeeee 007fffff

 ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

SVT FIFO Data2

 00000000 00111111 00222222 00333333 00044444 00155555 00266666 00377777

 00088888 00199999 002aaaaa 003bbbbb 000ccccc 001ddddd 002eeeee 007fffff

 ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

loop 0 0

internal L1a + wait

Test SVT loop= 10, ipat=2, iclk=1

TX RAMs -> RX Data Fifo total ERROR COUNT 0

BAD EVENTS 0

All SVT FIFOs null 0

FIFO 0 null 0

FIFO 1 null 0

FIFO 2 null 0

FIFO 0 error 0

FIFO 1 error 0

FIFO 2 error 0

value = 0 = 0x0

VISION status opening ts_txrx_slave 0

write 00000000

read 00000000

loop 0

Error count 0

value = 0 = 0x0

L1 Data1

 00000000 00000001 00000000 00000001 00000000 00000001 00000000 00000001

 00000000 00000001 00000000 00000001 00000000 00000001 00000000 00000003

 eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee

 L1 Data2

 00000000 11111111 22222222 33333333 44444444 55555555 66666666 77777777

 88888888 99999999 aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff

 eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee

 L1 Data2

 00000000 11111111 22222222 33333333 44444444 55555555 66666666 77777777

 88888888 99999999 aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff

 eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee

 L1 Data2

 00000000 00000001 00000000 00000001 00000000 00000001 00000000 00000001

 00000000 00000001 00000000 00000001 00000000 00000001 00000000 00000003

 eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee

loop 0

internal L1a + wait

Test: loop= 10, loop2= 16, ipat=2

TX RAMs -> RX Data Fifo total ERROR COUNT 0

BAD EVENTS 0

All L1 FIFOs null 0

FIFO 0 null 0

FIFO 1 null 0

FIFO 2 null 0

FIFO 0 error 0

FIFO 1 error 0

FIFO 2 error 0

value = 0 = 0x0

FISION: S_errno_EIO (0x5): VME BERR received!

read ID_PROM: : S_errno_EINVAL

VISION status opening l1_tx_slave 0

VISION status opening l1_rx_slave 0

 TestPatLow

 00000000 11111111 22222222 33333333 44444444 55555555 66666666 77777777

 88888888 99999999 aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff

 TestPatHigh

 00000000 11111111 22222222 33333333 44444444 55555555 66666666 77777777

 88888888 99999999 aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff

TestPatBb

 00000000 00000001 00000000 00000001 00000000 00000001 00000000

00000001

 00000000 00000001 00000000 00000001 00000000 00000001 00000000 00000003

 L1 Data0

 00000000 11111111 22222222 33333333 44444444 55555555 66666666 77777777

 88888888 99999999 aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff

 eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee

 L1 Data0

 00000000 11111111 22222222 33333333 44444444 55555555 66666666 77777777

 88888888 99999999 aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff

 eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee

 L1 Data0

 00000000 00000001 00000000 00000001 00000000 00000001 00000000 00000001

 00000000 00000001 00000000 00000001 00000000 00000001 00000000 00000003

 eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee

 L1 Data1

 00000000 11111111 22222222 33333333 44444444 55555555 66666666 77777777

 88888888 99999999 aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff

 eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee

 L1 Data1

 00000000 11111111 22222222 33333333 44444444 55555555 66666666 77777777

 88888888 99999999 aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff

 eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee eeeeeeee

VISION status opening tx_slave 0 �VISION status opening rx_slave 0 �loop 0, errors 0 �internal L1a + wait ��Test HOLA loop= 10, ipat=2, iclk=1 ���BAD EVENTS 0 �ERROR MASTER 0 �ERROR SLAVE 0 �value = 0 = 0x0

Location of Firmware 8/20/04

SVT Teststand Windows PC in Teststand Room

For FPGAs and EPC2s:

C:\users\sakari\Pulsar firmware configuration\Test\Test Firmware

>Taxi, Hotlink or HotlinkLVDS

>Rx or Tx

>Data IO or Control

>Stable

>filename.pof, filename1.pof, filename2.pof, or filename.sof

For VME:

C:\users\sakari\Pulsar firmware archive\VME chip

>vme_interface.pof

PAGE
36

_1154171187.ppt

