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1 Introduction

The “Standard Model” of elementary particle physics encompasses the progress that has
been made in the past half-century in understanding the weak, electromagnetic, and
strong interactions. The name was apparently bestowed by my Ph. D. thesis advisor,
Sam B. Treiman, whose dedication to particle physics kindled the light for so many of his
students during those times of experimental and theoretical discoveries. These lectures
are dedicated to his memory.

As graduate students at Princeton in the 1960s, my colleagues and I had no idea of the
tremendous strides that would be made in bringing quantum field theory to bear upon
such a wide variety of phenomena. At the time, its only domain of useful application
seemed to be in the quantum electrodynamics (QED) of photons, electrons, and muons.

Our arsenal of techniques for understanding the strong interactions included analyt-
icity, unitarity, and crossing symmetry (principles still of great use), and the emerging
SU(3) and SU(6) symmetries. The quark model (Gell-Mann 1964, Zweig 1964) was just
beginning to emerge, and its successes at times seemed mysterious. The ensuing decade
gave us a theory of the strong interactions, quantum chromodynamics (QCD), based on
the exchange of self-interacting vector quanta. QCD has permitted quantitative calcu-
lations of a wide range of hitherto intractable properties of the hadrons (Lev Okun’s
name for the strongly interacting particles), and has been validated by the discovery of
its force-carrier, the gluon.

In the 1960s the weak interactions were represented by a phenomenological (and un-
renormalizable) four-fermion theory which was of no use for higher-order calculations.
Attempts to describe weak interactions in terms of heavy boson exchange eventually
bore fruit when they were unified with electromagnetism and a suitable mechanism for
generation of heavy boson mass was found. This electroweak theory has been spectacu-
larly successful, leading to the prediction and observation of the W and Z bosons and
to precision tests which have confirmed the applicability of the theory to higher-order
calculations.
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Figure 1. Patterns of charge-changing weak transitions among quarks and leptons. The
strongest inter-quark transitions correspond to the solid lines, with dashed, dot-dashed,
and dotted lines corresponding to successively weaker transitions.

In this introductory section we shall assemble the ingredients of the standard model
— the quarks and leptons and their interactions. We shall discuss both the theory of the
strong interactions, quantum chromodynamics (QCD), and the unified theory of weak
and electromagnetic interactions based on the gauge group SU(2) ® U(1). Since QCD is
an unbroken gauge theory, we shall discuss it first, in the general context of gauge theories
in Section 2. We then discuss the theory of charge-changing weak interactions (Section 3)
and its unification with electromagnetism (Section 4). The unsolved part of the puzzle,
the Higgs boson, is treated in Section 5, while Section 6 concludes.

These lectures are based in part on courses that I have taught at the University of
Minnesota and the University of Chicago and at summer schools (e.g., Rosner 1988, 1997,
2002a). They owe a significant debt to the fine book by Quigg (1983).

1.1 Quarks and leptons

The fundamental building blocks of strongly interacting particles, the quarks, and the
fundamental fermions lacking strong interactions, the leptons, are summarized in Table
1. Masses are as quoted by the Particle Data Group (2004). These are illustrated, along
with their interactions, in Figure 1. The relative strengths of the charge-current weak
transitions between the quarks are summarized in Table 2.

The quark masses quoted in Table 1 are those which emerge when quarks are probed at
distances short compared with 1 fm, the characteristic size of strongly interacting particles
and the scale at which QCD becomes too strong to utilize perturbation theory. When
regarded as constituents of strongly interacting particles, however, the u and d quarks act
as quasi-particles with masses of about 0.3 GeV. The corresponding “constituent-quark”
masses of s, ¢, and b are about 0.5, 1.5, and 4.9 GeV, respectively.
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Table 1. The known quarks and leptons. Masses in GeV except where indicated other-
wise. Here and elsewhere we take c = 1.

Quarks Leptons
Charge 2/3 Charge —1/3 Charge —1 Charge 0
Mass Mass Mass Mass
u 1.5-4MeV |d 4-8 MeV e 511 keV | v, <3eV
c 115135 |s 80-130 MeV | u 106 MeV | v, <190 keV
t 1743+5.11|b 4.1-4.4 T 1.777 v, < 18.2 MeV

Table 2. Relative strengths of charge-changing weak transitions.

Relative  Transition Source of information

amplitude (example)

~1 U< d Nuclear S-decay

~1 cer s Charmed particle decays
~ 0.22 U S Strange particle decays
~ 0.22 cd Neutrino prod. of charm
~ (.04 c b b decays
~ 0.004 u <> b Charmless b decays

~ 1 t<b Dominance of t — Wb
~ (.04 t<s Only indirect evidence
~ (.01 td Only indirect evidence

1.2 Color and quantum chromodynamics

The quarks are distinguished from the leptons by possessing a three-fold charge known
as “color” which enables them to interact strongly with one another. (A gauged color
symmetry was first proposed by Nambu 1966.) We shall also speak of quark and lepton
“flavor” when distinguishing the particles in Table 1 from one another. The experimental
evidence for color comes from several quarters.

1. Quark statistics. One of the lowest-lying hadrons is a particle known as the A1,
an excited state of the nucleon first produced in 7%p collisions in the mid-1950s at the
University of Chicago cyclotron. It can be represented in the quark model as uuu, so it is
totally symmetric in flavor. It has spin J = 3/2, which is a totally symmetric combination
of the three quark spins (each taken to be 1/2). Moreover, as a ground state, it is expected
to contain no relative orbital angular momenta among the quarks.

This leads to a paradox if there are no additional degrees of freedom. A state composed
of fermions should be totally antisymmetric under the interchange of any two fermions,
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Figure 2. Values of R measured by the BES Collaboration.

but what we have described so far is totally symmetric under flavor, spin, and space
interchanges, hence totally symmetric under their product. Color introduces an additional
degree of freedom under which the interchange of two quarks can produce a minus sign,
through the representation AT+ ~ ey uubu’. The totally antisymmetric product of three
color triplets is a color singlet.

2. Electron-positron annihilation to hadrons. The charges of all quarks which can be
produced in pairs below a given center-of-mass energy is measured by the ratio

e 1)

o(ete” — hadrons

= o(ete™ = ptu)

For energies at which only ui, dd, and s5 can be produced, i.e., below the charmed-pair
threshold of about 3.7 GeV, one expects

2\ 2 —1\? —1\? 2
R=N|(5) < (3) ()] =5 :
[ 3 * 3 * 3 3 )
for N, “colors” of quarks. Measurements first performed at the Frascati laboratory in
Italy and most recently at the Beijing Electron-Positron Collider (Bai et al. 2001; see Fig.

2) indicate R = 2 in this energy range (with a small positive correction associated with
the strong interactions of the quarks), indicating N, = 3.

3. Neutral pion decay. The 7° decay rate is governed by a quark loop diagram in
which two photons are radiated by the quarks in 7° = (u@ — dd)/v/2. The predicted rate
is

SZmd [ a\?
T(r° = yy) = Sn 2 (g) : (3)
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where f, = 131 MeV and S = N.(Q? — Q%) = N./3. The experimental rate is 7.8 & 0.6
eV, while Eq. (3) gives 7.65? eV, in accord with experiment if S =1 and N, = 3.

4. Triality. Quark composites appear only in multiples of three. Baryons are composed
of qqq, while mesons are ¢q (with total quark number zero). This is compatible with
our current understanding of QCD, in which only color-singlet states can appear in the
spectrum. Thus, mesons M and baryons B are represented by

1 1 c
M=—(¢"q) , B=——(eancq’d"q") . (4)

V3 V6

Direct evidence for the quanta of QCD, the gluons, was first presented in 1979 on the
basis of extra “jets” of particles produced in electron-positron annihilations to hadrons.
Normally one sees two clusters of energy associated with the fragmentation of each quark
in ete” — ¢q into hadrons. However, in some fraction of events an extra jet was seen,
corresponding to the radiation of a gluon by one of the quarks.

The transformations which take one color of quark into another are those of the group
SU(3). We shall often refer to this group as SU(3)color to distinguish it from the SU(3)gayor
associated with the quarks u, d, and s.

1.3 Electroweak unification

The electromagnetic interaction is described in terms of photon exchange, for which the
Born approximation leads to a matrix element behaving as 1/¢?>. Here ¢ is the four-
momentum transfer, and ¢? is its invariant square. The quantum electrodynamics of
photons and charged pointlike particles (such as electrons) initially encountered calcula-
tional problems in the form of divergent quantities, but these had been tamed by the late
1940s through the procedure known as renormalization, leading to successful estimates of
such quantities as the anomalous magnetic moment of the electron and the Lamb shift in
hydrogen.

By contrast, the weak interactions as formulated up to the mid-1960s involved the
pointlike interactions of two currents, with an interaction Hamiltonian Hyw = GpJ,J ut / V2,
with Gp = 1.16637(1) x 107> GeV~2 the current value for the Fermi coupling constant.
This interaction is very singular and cannot be renormalized. The weak currents J, in
this theory were purely charge-changing. As a result of work by Lee and Yang, Feynman
and Gell-Mann, and Marshak and Sudarshan in 19567 they were identified as having
(vector)—(axial) or “V — A” form.

Hideki Yukawa (1935) and Oskar Klein (1938) proposed a boson-exchange model for
the charge-changing weak interactions. Klein’s model attempted a unification with elec-
tromagnetism and was based on a local isotopic gauge symmetry, thus anticipating the
theory of Yang and Mills (1954). Julian Schwinger and others studied such models in
the 1950s, but Glashow (1961) was the first to realize that a new neutral heavy boson
had to be introduced as well in order to successfully unify the weak and electromagnetic
interactions. The breaking of the electroweak symmetry (Weinberg 1967, Salam 1968)
via the Higgs (1964) mechanism converted this phenomenological theory into one which
could be used for higher-order calculations, as was shown by ’t Hooft and Veltman in the
early 1970s.
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The boson-exchange model for charge-changing interactions replaces the Fermi in-
teraction constant with a coupling constant g at each vertex and the low-¢? limit of a
propagator, 1/(M32, — ¢*) — 1/M2,, with factors of 2 chosen so that Gr/v/2 = ¢?/8MZ,.
The ¢? term in the propagator helps the theory to be more convergent, but it is not the
only ingredient needed, as we shall see.

The normalization of the charge-changing weak currents J, suggested well in advance
of electroweak unification that one regard the corresponding integrals of their time com-
ponents (the so-called weak charges) as members of an SU(2) algebra (Gell-Mann and
Lévy 1960, Cabibbo 1963). However, the identification of the neutral member of this
multiplet as the electric charge was problematic. In the V' — A theory the W’s couple
only to left-handed fermions 1, = (1 — 75)¥/2, while the photon couples to ¥, + g,
where ¥r = (1 + 75)1/2. Furthermore, the high-energy behavior of the v — WHW~
scattering amplitude based on charged lepton exchange leads to unacceptable divergences
if we incorporate it into the one-loop contribution to vv — v (Quigg 1983).

A simple solution was to add a neutral boson Z coupling to W+W ™ and vv in such a
way as to cancel the leading high-energy behavior of the charged-lepton-exchange diagram.
This relation between couplings occurs naturally in a theory based on the gauge group
SU(2) ® U(1). The Z leads to neutral current interactions, in which (for example) an
incident neutrino scatters inelastically on a hadronic target without changing its charge.
The discovery of neutral-current interactions of neutrinos and many other manifestations
of the Z proved to be striking confirmations of the new theory.

If one identifies the W and W~ with raising and lowering operations in an SU(2), so
that W* = (W' £4iW?)y/2, then left-handed fermions may be assigned to doublets of this
“weak isospin,” with I3z (u,c,t) = Iz, (Ve, vy, vr) = +1/2, I31(d, $,b) = Isp(e ,p,77) =
—1/2. All the right-handed fermions have I, = I3;, = 0. As mentioned, one cannot simply
identify the photon with W3, which also couples only to left-handed fermions. Instead,
one must introduce another boson B associated with a U(1) gauge group. It will mix
with the W3 to form physical states consisting of the massless photon A and the massive
neutral boson Z:

A= Bcosf+W3sinf , Z=—Bsinf+ W3cosf . (5)

The mixing angle 6 appears in many electroweak processes. It has been measured to
sufficiently great precision that one must specify the renormalization scheme in which it is
quoted. For present purposes we shall merely note that sin? € ~ 0.23. The corresponding
SU(2) and U(1) coupling constants g and ¢' are related to the electric charge e by e =

gsinf = ¢’ cos 6, so that
1 1 1
aTg g ©

The electroweak theory successfully predicted the masses of the W* and Z:
My ~ 38.6 GeV/sinf ~ 80.5 GeV , Mz~ My/cosf ~91.2 GeV (7)

where we show the approximate experimental values. The detailed check of these predic-
tions has reached the precision that one can begin to look into the deeper structure of
the theory. A key ingredient in this structure is the Higgs boson, the price that had to be
paid for the breaking of the electroweak symmetry.



Standard Model 7

1.4 Higgs boson

An unbroken SU(2) ® U(1) theory involving the photon would require all fields to have
zero mass, whereas the W= and Z are massive. The symmetry-breaking which generates
W and Z masses must not destroy the renormalizability of the theory. However, a massive
vector boson propagator is of the form

—Guv + q QU/M2
DNU(Q) = qu . IA;MQ (8)

where M is the boson mass. The terms g,g,, when appearing in loop diagrams, will
destroy the renormalizability of the theory. They are associated with longitudinal vector
boson polarizations, which are only present for massive bosons. For massless bosons like
the photon, there are only transverse polarization states J, = +.J.

The Higgs mechanism, to be discussed in detail later in these lectures, provides the
degrees of freedom needed to add a longitudinal polarization state for each of W+, W—,
and W°. In the simplest model, this is achieved by introducing a doublet of complex

Higgs fields:
¢+ ¢’
= , * = . 9
’ l ¢° } ’ [ ¢ ] 9

Here the charged Higgs fields ¢* provide the longitudinal component of W= and the linear
combination (¢° — @°) /iv/2 provides the longitudinal component of the Z. The additional
degree of freedom (¢° + ¢°)/v/2 corresponds to a physical particle, the Higgs particle,
which is the subject of intense searches.

Discovering the nature of the Higgs boson is a key to further progress in understanding
what may lie beyond the Standard Model. There may exist one Higgs boson or more than
one. There may exist other particles in the spectrum related to it. The Higgs boson may
be elementary or composite. If composite, it points to a new level of substructure of the
elementary particles. Much of our discussion will lead up to strategies for the next few
years designed to address these questions. First, we introduce the necessary topic of gauge
theories, which have been the platform for all the developments of the past thirty years.

2 Gauge theories

2.1 Abelian gauge theories

The Lagrangian describing a free fermion of mass m is Lgee = (i @ —m)tb. It is invariant
under the global phase change ¢ — exp(ia). (We shall always consider the fermion fields
to depend on z.) Now consider independent phase changes at each point:

P — ' = explia(z)]. (10)

Because of the derivative, the Lagrangian then acquires an additional phase change at

each point: dLgee = Yiy*[i0,c(x)]tp. The free Lagrangian is not invariant under such
changes of phase, known as local gauge transformations.
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Local gauge invariance can be restored if we make the replacement 0, — D, =
0, + ieA, in the free-fermion Lagrangian, which now is

L=9(iP-—myp=20(9—m)y—e) Alx)y . (11)

The effect of a local phase in ¢/ can be compensated if we allow the vector potential A,
to change by a total divergence, which does not change the electromagnetic field strength
(defined as in Peskin and Schroeder 1995; Quigg 1983 uses the opposite sign)

F, =0,A,-0,A, . (12)
Indeed, under the transformation ¢ — 9’ and with A — A’ with A’ yet to be determined,
we have

L= p—m)y —ed A =0 §—m) - P[Ja(a)l —epfy . (13)

This will be the same as L if
, 1
Ay (z) = Au(z) — gaua(l“) : (14)

The derivative D, is known as the covariant derivative. One can check that under a local
gauge transformation, D,y — ei“(")D“w.

Another way to see the consequences of local gauge invariance suggested by Yang
(1974) and discussed by Peskin and Schroeder (1995, pp 482-486) is to define —eA,,(z)dz*
as the local change in phase undergone by a particle of charge e as it passes along an
infinitesimal space-time increment between x* and x* 4 dx*. For a space-time trip from
point A to point B, the phase change is then

®ap = exp <—z’e /A ? Au(x)dx“> . (15)

The phase in general will depend on the path in space-time taken from point A to point
B. As a consequence, the phase ® 4p is not uniquely defined. However, one can compare
the result of a space-time trip along one path, leading to a phase <I>(A%, with that along
another, leading to a phase @fg. The two-slit experiment in quantum mechanics involves
such a comparison; so does the Bohm-Aharonov effect in which a particle beam traveling
past a solenoid on one side interferes with a beam traveling on the other side. Thus, phase

differences
o102 = b = exp (—ie ]f Au(x)d:r“) , (16)

associated with closed paths in space-time (represented by the circle around the integral
sign), are the ones which correspond to physical experiments. The phase ®¢ for a closed
path C is independent of the phase convention for a charged particle at any space-time
point xg, since any change in the contribution to ®. from the integral up to x, will be
compensated by an equal and opposite contribution from the integral departing from z.

The closed path integral (16) can be expressed as a surface integral using Stokes’

theorem:
?{ A (z)da" = / Fo(z)do™ | (17)
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where the electromagnetic field strength F},, was defined previously and do*” is an element
of surface area. It is also clear that the closed path integral is invariant under changes
(14) of A, (z) by a total divergence. Thus F},, suffices to describe all physical experiments
as long as one integrates over a suitable domain. In the Bohm-Aharonov effect, in which
a charged particle passes on either side of a solenoid, the surface integral will include the
solenoid (in which the magnetic field is non-zero).

If one wishes to describe the energy and momentum of free electromagnetic fields, one
must include a kinetic term Lx = —(1/4)F,, F* in the Lagrangian, which now reads

L=~ JFu ™ + (i §—m) — b Ay (18)

If the electromagnetic current is defined as J™ = ¥y,1, this Lagrangian leads to Maxwell’s
equations.

The local phase changes (10) form a U(1) group of transformations. Since such trans-
formations commute with one another, the group is said to be Abelian. Electrodynamics,
just constructed here, is an example of an Abelian gauge theory.

2.2 Non-Abelian gauge theories

One can imagine that a particle traveling in space-time undergoes not only phase changes,
but also changes of identity. Such transformations were first considered by Yang and Mills
(1954). For example, a quark can change in color (red to blue) or flavor (u to d). In that
case we replace the coefficient eA, of the infinitesimal displacement dx, by an n x n
matrix —gA,(z) = —g A’ (z)T; acting in the n-dimensional space of the particle’s degrees
of freedom. (The sign change follows the convention of Peskin and Schroeder 1995.)
For colors, n = 3. The T; form a linearly independent basis set of matrices for such
transformations, while the AZ are their coefficients. The phase transformation then must
take account of the fact that the matrices A,(z) in general do not commute with one
another for different space-time points, so that a path-ordering is needed:

Bup="P [exp (ig / 7 A,L(x)dx“ﬂ . (19)

A

When the basis matrices T; do not commute with one another, the theory is non-Abelian.

We demand that changes in phase or identity conserve probability, i.e., that ® 45 be
unitary: ®z®4p = 1. When ® 45 is a matrix, the corresponding matrices A, (z) in (19)
must be Hermitian. If we wish to separate out pure phase changes, in which A () is a
multiple of the unit matrix, from the remaining transformations, one may consider only
transformations such that det(®45) = 1, corresponding to traceless A,(z).

The n x n basis matrices T; must then be Hermitian and traceless. There will be

n? — 1 of them, corresponding to the number of independent SU(N) generators. (One

can generalize this approach to other invariance groups.) The matrices will satisfy the
commutation relations

[TZ‘, T]] = icijka ; (20)

where the c;j, are structure constants characterizing the group. For SU(2), ¢;jx = €k (the
Kronecker symbol), while for SU(3), ¢;jx = fijk, where the f;j, are defined in Gell-Mann
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and Ne’eman (1964). A 3 x 3 representation in SU(3) is T; = A;/2, where \;/2 are the
Gell-Mann matrices normalized such that Tr A\;\; = 26;;. For this representation, then,

In order to define the field-strength tensor F,, = FZUTi for a non-Abelian transforma-
tion, we may consider an infinitesimal closed-path transformation analogous to Eq. (16)

for the case in which the matrices A,(x) do not commute with one another. The result
(see, e.g., Peskin and Schroeder 1995, pp 486-491) is

F, =d,A, —,A, —ig[A,,A)] | Fl =0,A — 9,4 +gepAlAE . (21)

An alternative way to introduce non-Abelian gauge fields is to demand that, by analogy
with Eq. (10), a theory involving fermions ¢ be invariant under local transformations

P(z) = ¥'(2) =U(e)p(x) , UU=1, (22)

where for simplicity we consider unitary transformations. Under this replacement, £ —
L', where

L'=9Gg—my =yU" (i - m)U
=y P —m)yY+ipU v (0,U) . (23)
As in the Abelian case, an extra term is generated by the local transformation. It can be
compensated by replacing 0, by
0, —D,=0,—igA,(z) . (24)
In this case £ = 1(i I — m)v and under the change (22) we find
L=P6ER —m) =9U (i §+g K —m)Uy

=L+YlgU™ KU- LK) +U(QU)Y . (25)
This is equal to L if we take

1 _
A, =UAU 1 5(8HU)U o (26)
This reduces to our previous expressions if g = —e and U = e'*(*),
The covariant derivative acting on 1 transforms in the same way as 1 itself under
a gauge transformation: D,y — Dj9' = UDyy. The field strength F,, transforms
as F,, = F, = UF,, U '. It may be computed via [D,,D,] = —igF,,; both sides
transform as U( )U~! under a local gauge transformation.
In order to obtain propagating gauge fields, as in electrodynamics, one must add
a kinetic term Lx = —(1/4)F.,F* to the Lagrangian. Recalling the representation
F,, = F}, in terms of gauge group generators normalized such that Tr(T;T;) = 655/2, we
can write the full Yang-Mills Lagrangian for gauge fields interacting with matter fields as

L= —%Tr(FWF’“’) LD —m) (27)

We shall use Lagrangians of this type to derive the strong, weak, and electromagnetic
interactions of the “Standard Model.”
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The interaction of a gauge field with fermions then corresponds to a term in the
interaction Lagrangian AL = gi(x)y*A,(z)¢(x). The [A,, A,] term in F,, leads to
self-interactions of non-Abelian gauge fields, arising solely from the kinetic term. Thus,
one has three- and four-field vertices arising from

2
ALY = (8,A1)geijn AW AR ALY = —gzcijkcimnA‘”A”kAL"Aﬁ . (28)
These self-interactions are an important aspect of non-Abelian gauge theories and are
responsible in particular for the remarkable asymptotic freedom of QCD which leads to its
becoming weaker at short distances, permitting the application of perturbation theory.

2.3 Elementary divergent quantities

In most quantum field theories, including quantum electrodynamics, divergences occurring
in higher orders of perturbation theory must be removed using charge, mass, and wave
function renormalization. This is conventionally done at intermediate calculational stages
by introducing a cutoff momentum scale A or analytically continuing the number of space-
time dimensions away from four. Thus, a vacuum polarization graph in QED associated
with external photon momentum £ and a fermion loop will involve an integral

d*p 1 1
() ~ [ 520 A 29
u() (271')4 r(ﬁ_mvuﬁ_i_h_m’)/) ( )
a self-energy of a fermion with external momentum p will involve
d*q 1 1
S(p) ~ / - no 30
O ) i g g m )

and a fermion-photon vertex function with external fermion momenta p, p’ will involve

d'k 1 1 1
A ! ~ —, v
u(Pp) /(27)4 K2 F+ k—m Yt }é—mfy

The integral (29) appears to be quadratically divergent. However, the gauge invariance
of the theory translates into the requirement £*II,, = 0, which requires II,, to have the
form

(31)

L (k) = (kg — kuk)TI(K?) (32)

The corresponding integral for I1(k?) then will be only logarithmically divergent. The inte-
gral in (30) is superficially linearly divergent but in fact its divergence is only logarithmic,
as is the integral in (31).

Unrenormalized functions describing vertices and self-energies involving np external

boson lines and ny external fermion lines may be defined in terms of a momentum cutoff
A and a bare coupling constant gy (Coleman 1971, Ellis 1977, Ross 1978):

FU = FU (pza 9o, A) ) (33)

np,Nr nB,NFr

where p; denote external momenta. Renormalized functions I'® may be defined in terms of
a scale parameter y, a renormalized coupling constant g = ¢(go, A/p), and renormalization
constants Zg(A) and Zr(A) for the external boson and fermion wave functions:

PR (pi, g,10) = Jim [Zp(A)]" (Ze (AT, o, (pi 90, A) (34
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The scale p is typically utilized by demanding that I'® be equal to some predetermined
function at a Euclidean momentum p? = —pu?. Thus, for the one-boson, two-fermion

vertex, we take

F{Z,Q(Oapa _p)|p2:—u2 = Alggo Z%ZBF?Q(O,Z% —p)\pzz_uz =9 - (35)

The unrenormalized function I'V is independent of u, while I'® and the renormalization
constants Zg(A), Zp(A) will depend on p. For example, in QED, the photon wave
function renormalization constant (known as Z3) behaves as

A2
23:1—5—7‘;1nﬁ . (36)

The bare charge ey and renormalized charge e are related by e = eoZé/ ?. To lowest
order in perturbation theory, e < e;. The vacuum behaves as a normal dielectric; charge
is screened. It is the exception rather than the rule that in QED one can define the
renormalized charge for ¢ = 0; in QCD we shall see that this is not possible.

2.4 Scale changes and the beta function

We differentiate both sides of (34) with respect to u and multiply by u. Since the functions
I'Y are independent of u, we find

8  dg o
(u— + u——) T'%(pi, g, 1)

ou ou g
. np 8ZB ng 8ZF n n U
= 1 iy i Y P B F
Aim (ZBM on T 7" o ) VA (37)
or
9 4 B0)2 + nmye(9) + neye(a) | (w9 1) = 0 (38)
Ma,u g g npYB\9g nrYr\g bi g, k) = )
where B YA YA
—— - __H92B — _Mrozr
Blg) = o v8(9) = 7n o r(9) = Zr on (39)

The behavior of any generalized vertex function I'® under a change of scale yu is then
governed by the universal functions (39).

Here we shall be particularly concerned with the function 5(g). Let us imagine yp — Ap
and introduce the variables t = In A, §(g,t) = g(g0, A/A1), Then the relation for the beta-
function may be written

WL _ b5 . (0.0 =gl A =g (10)

Let us compare the behavior of § with increasing ¢ (larger momentum scales or shorter
distance scales) depending on the sign of 5(g). In general we will find 3(0) = 0. We take
B(g) to have zeroes at g =0, g1, g2, -... Then:
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1. Suppose 3(g) > 0. Then g increases from its ¢ = 0 value g = ¢ until a zero g; of
B(g) is encountered. Then g — g; as t — oo.

2. Suppose S(g) < 0. Then g decreases from its t = 0 value § = g until a zero g; of
B(g) is encountered.

In either case g approaches a point at which 5(g) = 0, §'(g) < 0 as ¢ — oo. Such
points are called ultraviolet fized points. Similarly, points for which 3(g) = 0, 5'(g) > 0
are infrared fized points, and g will tend to them for ¢ — —oo (small momenta or large
distances). The point e = 0 is an infrared fixed point for quantum electrodynamics, since
B'(e) >0at e=0.

It may happen that 5'(0) < 0 for specific theories. In that case g = 0 is an ultraviolet
fixed point, and the theory is said to be asymptotically free. We shall see that this property
is particular to non-Abelian gauge theories (Gross and Wilczek 1973, Politzer 1974).

2.5 Beta function calculation

In quantum electrodynamics a loop diagram involving a fermion of unit charge contributes
the following expression to the relation between the bare charge ey and the renormalized

charge e:
A
e=60<1—§—;ln;> , (41)
as implied by (35) and (36), where ay = e2/47. We find

Ble)= Do & (42)
= 1om2 = 1272

where differences between ey and e correspond to higher-order terms in e. (Here o =
e?/4m.) Thus f(e) > 0 for small e and the coupling constant becomes stronger at larger
momentum scales (shorter distances).

We shall show an extremely simple way to calculate (42) and the corresponding result
for a charged scalar particle in a loop. From this we shall be able to first calculate the
effect of a charged vector particle in a loop (a calculation first performed by Khriplovich
1969) and then generalize the result to Yang-Mills fields. The method follows that of
Hughes (1980).

When one takes account of vacuum polarization, the electromagnetic interaction in
momentum space may be written

€2 €2

N S 43

) )
Here the long-distance (¢* — 0) behavior has been defined such that e is the charge
measured at macroscopic distances, so II[(0) = 0. Following Sakurai (1967), we shall
reconstruct II;(¢?) for a loop involving the fermion species ¢ from its imaginary part,
which is measurable through the cross section for ete™ — u:

Im IL;(s) = ﬁa(eﬁe* — i) (44)
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where s is the square of the center-of-mass energy. For fermions f of charge e; and mass

ch,
ae? 2m> Am2\ '/
_ f / 2
while for scalar particles of charge e; and mass my,
2 Am2\ 2/
an@):i?<1—7m) 0(s — 4m?) . (46)
S

The corresponding cross section for ete™ — p*u~, neglecting the muon mass, is
olete” — utp~) = 4ma?/3s, so one can define

Ri=o(ete —u)/olete - ptu ) (47)

in terms of which Im II;(s) = aR;(s)/3. For s — oo one has Ry(s) — €% for a fermion
and R,(s) — e2/4 for a scalar.

The full vacuum polarization function I1;(s) cannot directly be reconstructed in terms
of its imaginary part via the dispersion relation

1 poo ds
HZ(S) = ; Am2 3’ — SIIII Hi(SI) s (48)
since the integral is logarithmically divergent. This divergence is exactly that encountered
earlier in the discussion of renormalization. For quantum electrodynamics we could deal
with it by defining the charge at ¢*> = 0 and hence taking I1;(0) = 0. The once-subtracted
dispersion relation for I1;(s) — II;(0) would then converge:

s [ ds'

Mi(s) = > [ o Im () 19

(5) 7 Jam2 §'(s' — s) m TL;(s") (49)

However, in order to be able to consider cases such as Yang-Mills fields in which the
theory is not well-behaved at ¢* = 0, let us instead define IT;(—u?) = 0 at some spacelike

scale ¢> = —pu?. The dispersion relation is then
1 1 ,
IL(s) = ;~/4m2 ds [s’—s — s’+,u2] Im IL;(s") . (50)
For [¢®| > p? > m?, we find
IL;(¢%) — —gR-(oo) In —_q2 + const (51)
i 3r " w? |

and so, from (43), the “charge at scale ¢” may be written as

2= C g 1+~ Ri(o0)In—L| . (52)
7714 11;(¢?) T

The beta-function here is defined by S(e) = 1(0e/Op)|fixed e,- Thus, expressing f(e) =
— o€’ /(16m2) + O(€®), one finds By = —(4/3)e? for spin-1/2 fermions and fo = —(1/3)e?
for scalars.
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These results will now be used to find the value of 3, for a single charged massless vector
field. We generalize the results for spin 0 and 1/2 to higher spins by splitting contributions
to vacuum polarization into “convective” and “magnetic” ones. Furthermore, we take into
account the fact that a closed fermion loop corresponds to an extra minus sign in II¢(s)
(which is already included in our result for spin 1/2). The “magnetic” contribution of
a particle with spin projection S, must be proportional to S%. For a massless spin-S
particle, S? = S%2. We may then write

_1\nF 2 —
4 { (—1)"# (aS® +b)(S =0) , (53
(=1)"# (aS?* + 2b)(S #0)

where np = 1 for a fermion, 0 for a boson. The factor of 2b for S # 0 comes from the
contribution of each polarization state (S, = £5) to the convective term. Matching the
results for spins 0 and 1/2,

1 4 a
=) ——=—(=42 54
3 ’ 3 <4+ ) ’ (54)
we find a = 8 and hence for S =1
2 22
BO_S_E_E ) (55)

The magnetic contribution is by far the dominant one (by a factor of 12), and is of
opposite sign to the convective one. A similar separation of contributions, though with
different interpretations, was obtained in the original calculation of Khriplovich (1969).
The reversal of sign with respect to the scalar and spin-1/2 results is notable.

2.6 Group-theoretic techniques

The result (55) for a charged, massless vector field interacting with the photon is also the
value of §, for the Yang-Mills group SO(3) ~ SU(2) if we identify the photon with A3

and the charged vector particles with A* = (A} 7iA2)/v/2. We now generalize it to the
contribution of gauge fields in an arbitrary group G.

The value of 8y gauge ficlas depends on a sum over all possible self-interacting gauge
fields that can contribute to the loop with external gauge field labels ¢ and m:

BolG] o CgkCanjk

= , (56)
BISUD] ~ U S0
where ¢ is the structure constant for G, introduced in Eq. (20). The sums in (56) are

proportional to d;,,:
CijkCmjk = OimC2(A) . (57)

The quantity Cy(A) is the quadratic Casimir operator for the adjoint representation of
the group G.

Since the structure constants for SO(3) ~ SU(2) are just cZ-SjI,JC(Q) = €;jk, one finds

C5(A) = 2 for SU(2), so the generalization of (55) is that Sy gauge fields = (11/3)Ca(A).
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The contributions of arbitrary scalars and spin-1/2 fermions in representations R are
proportional to T'(R), where
Tr (TiT;) = 6T (R) (58)
for matrices 7; in the representation R. For a single charged scalar particle (e.g., a
pion) or fermion (e.g., an electron), T'(R) = 1. Thus By spin 0 = —(1/3)To(R), while
Bo spin 172 = —(4/3)T12(R), where the subscript on 7'(R) denotes the spin. Summarizing
the contributions of gauge bosons, spin 1/2 fermions, and scalars, we find

o= 5. Cold) = 3 L TolRy) — 3 L Th(R) (59
f S

One often needs the beta-function to higher orders, notably in QCD where the per-
turbative expansion coefficient is not particularly small. It is

3 §5
ﬂ1m +... s (60)

where the result for gauge bosons and spin 1/2 fermions (Caswell 1974) is

9
1672

B(g9) = —Bo

B = % [17[Co(A)? — 10T(R)Ca(A) — 6T(R)Ca(R)} . (61)

The first term involves loops exclusively of gauge bosons. The second involves single-
gauge-boson loops with a fermion loop on one of the gauge boson lines. The third involves

fermion loops with a fermion self-energy due to a gauge boson. The quantity Co(R) is
defined such that . .

[T'(R)T"(R)]ag = Ca(R)dap (62)
where o and (3 are indices in the fermion representation.

We now illustrate the calculation of Cy(A), T(R), and Cy(R) for SU(N). More general
techniques are given by Slansky (1981); see also Rosner (1981).

Any SU(N) group contains an SU(2) subgroup, which we may take to be generated
by 11, T3, and T3. The isospin projection I3 may be identified with 73. Then the I3 value
carried by each generator T; (written for convenience in the fundamental N-dimensional
representation) may be identified as shown below:

— 2= +~—N-2—

0 1 /2 - 1/2
-1 0o |-1/2 --- —1/2
-1/2 1/2 0 0
-1/2 1/2 0 0

Since Cy(A) may be calculated for any convenient value of the index ¢ = m in (57),
we chose 7 = m = 3. Then

CoA)= 3 ()2 =1+1+4(N—2) (%)2=N . (63)

adjoint
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As an example, the octet (adjoint) representation of SU(3) has two members with |I3| = 1
(e.g., the charged pions) and four with |I3] = 1/2 (e.g., the kaons).

For members of the fundamental representation of SU(N), there will be one member
with I3 = +1/2, another with I3 = —1/2, and all the rest with I3 = 0. Then again
choosing : = m = 3 in Eq. (58), we find T(R)|tundamentat = 1/2. The SU(N) result for 5,
in the presence of ny spin 1/2 fermions and n, scalars in the fundamental representation

then may be written
11 2 1

The quantity Cy(R) in (62) is most easily calculated by noting that the sum over all
indices @ = § of Eq. (62) is the same as the sum over all indices i = j of Eq. (58). This
implies that

T(R)d(G) = Co(R)d(R) (65)

where d(G) is the dimension of the adjoint representation of the group [N? —1 for SU(N)],
and d(R) is the dimension of the representation R [N for the fundamental representation
of SU(N)]. Also recall that for the fundamental representation, 7(R) = 1/2. Thus for the
fundamental representation one then finds

cm-tw [+ (D] @

2.7 The running coupling constant

One may integrate Eq. (60) to obtain the coupling constant as a function of momentum
scale M and a scale-setting parameter A. In terms of @ = §®/4w, one has

da 2 6!3 2

Q M
— =—fy——-b— , t'=2t=In|—] . 67
For large t' the result can be written as

_ 4 ,31 In t,
2\ _
a(M’) = Bot’ [1 B

] +0@{?) . (68)

Suppose a process involves p powers of « to leading order and a correction of order
~p+1
aPtl:

I = Aa®[1 + Ba+ O(@%)] . (69)
If A is rescaled to AA, then ¢/ = ¢ —2In A =#(1 —2In\/t'), so

a’ — af (1 + I;—ﬁodln /\> : (70)
™

The coefficient B thus depends on the scale parameter used to define a.

Many prescriptions have been adopted for defining A. In one ('t Hooft 1973), the
“minimal subtraction” or MS scheme, ultraviolet logarithmic divergences are parametrized
by continuing the space-time dimension d = 4 to d = 4 — ¢ and subtracting pole terms
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Figure 3. Scale-dependence of the strong-coupling constant as(M?) subject to the con-
straint as(M2) = 0.118 £ 0.002. The solid line shows the central value; dashed lines
indicate £1o limits.

[d*¢/p* ~ 1/e. In another (Bardeen et al. 1978) (the “modified minimal subtraction or
MS scheme) a term

=-+— (71)

containing additional finite pieces is subtracted. Here yg = 0.5772 is Euler’s constant, and
one can show that Agg = Ams exp[(Indm — vg)/2]. Many O(&) corrections are quoted in
the MS scheme. Specification of A in any scheme is equivalent to specification of a(M?).

1 1 Indr—ng
€

2.8 Applications to quantum chromodynamics

A “golden application” of the running coupling constant to QCD is the effect of gluon
radiation on the value of R in ete™ annihilations. Since R is related to the imaginary part
of the photon vacuum polarization function II(s) which we have calculated for fermions
and scalar particles, one calculates the effects of gluon radiation by calculating the correc-
tion to II(s) due to internal gluon lines. The leading-order result for color-triplet quarks
is R(s) = R(s)[1 + a(s)/m]. There are many values of s at which one can measure such
effects. For example, at the mass of the Z, the partial decay rate of the Z to hadrons
involves the same correction, and leads to the estimate ag(M2) = 0.118 & 0.002. The
dependence of as(M?) satisfying this constraint on M? is shown in Figure 3. As we shall
see in Section 5.1, the electromagnetic coupling constant also runs, but much more slowly,
with o' changing from 137.036 at ¢®> = 0 to about 129 at ¢*> = M3.

A system which illustrates both perturbative and non-perturbative aspects of QCD is
the bound state of a heavy quark and a heavy antiquark, known as quarkonium (in analogy
with positronium, the bound state of a positron and an electron). We show in Figures 4
and 5 the spectrum of the c¢ and bb bound states (Rosner 1997). The charmonium (cc)
system was an early laboratory of QCD (Appelquist and Politzer 1975).
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Figure 4. Charmonium (c¢) spectrum. Observed and predicted levels are denoted by
solid and dashed horizontal lines, respectively. Arrows denote electromagnetic transitions
(labeled by ) and hadronic transitions (labeled by emitted hadrons).

T(6S) _
11.0 — —— —=BB |
= T(58) _ i
L — —— BB |
L T(45 _ i
SRR S S en@®)
10.5 — ]
B T(38) |
& L 7ms(38) op) |
S ar ED @) xR x2(ZR)
3 v

e i (25) T(28) g
n 10.0 — My T ]

””” 1P

é - hy(1P) Xoo(1P)  Xp1(1P) Xp2(1P)
[ T i |
i Vv .
95 — T(18) ]
L mu(18). |

JPC: 07+ ]77 1+7 O++ ]l++ 2++

Figure 5. Spectrum of bb states. Observed and predicted levels are denoted by solid
and dashed horizontal lines, respectively. In addition to the transitions labeled by arrows,
numerous electric dipole transitions and decays of states below BB threshold to hadrons

containing light quarks have been seen.
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The S-wave (L = 0) levels have total angular momentum J, parity P, and charge-
conjugation eigenvalue C equal to J¥¢ = 0%~ and 1~ as one would expect for 1S, and 35,
states, respectively, of a quark and antiquark. The P-wave (L = 1) levels have JF'¢ = 1+~
for the ' P, 07 for the 3Py, 11+ for the 2P;, and 2+ for the 3P,. The JF¢ =17~ levels
are identified as such by their copious production through single virtual photons in ete™
annihilations. The 0~ level 7, is produced via single-photon emission from the J/1 (so its
C is positive) and has been directly measured to have J compatible with 0~. Numerous
studies have been made of the electromagnetic (electric dipole) transitions between the
S-wave and P-wave levels and they, too, support the assignments shown.

The bb and c¢ levels have a very similar structure, aside from an overall shift. The
similarity of the ¢z and bb spectra is in fact an accident of the fact that for the interquark
distances in question (roughly 0.2 to 1 fm), the interquark potential interpolates between
short-distance Coulomb-like and long-distance linear behavior. The Coulomb-like behav-
ior is what one would expect from single-gluon exchange, while the linear behavior is a
particular feature of non-perturbative QCD which follows from Gauss’ law if chromoelec-
tric flux lines are confined to a fixed area between two widely separated sources (Nambu
1974). It has been explicitly demonstrated by putting QCD on a space-time lattice, which
permits it to be solved numerically in the non-perturbative regime.

States consisting of a single charmed quark and light (u, d, or s) quarks or antiquarks
are shown in Figure 6. Finally, the pattern of states containing a single b quark (Figure 7)
is very similar to that for singly-charmed states, though not as well fleshed-out. In many
cases the splittings between states containing a single b quark is less than that between
the corresponding charmed states by roughly a factor of m./my ~ 1/3 as a result of the
smaller chromomagnetic moment of the b quark. Pioneering work in understanding the
spectra of such states using QCD was done by De Rujula et al. (1975), building on earlier
observations on light-quark systems by Zel’dovich and Sakharov (1966), Dalitz (1967),
and Lipkin (1973).

3 W bosons

3.1 Fermi theory of weak interactions

The effective four-fermion Hamiltonian for the V' — A theory of the weak interactions is

%Wm(l—’ys)d)z][%v“(l—%)w] =4%@1Lwn)@m%> ()

where Gy and 1y were defined in Section 1.3. We wish to write instead a Lagrangian
for interaction of particles with charged W bosons which reproduces (72) when taken to
second order at low momentum transfer. We shall anticipate a result of Section 4 by
introducing the W through an SU(2) symmetry, in the form of a gauge coupling.

Hw =

In the kinetic term in the Lagrangian for fermions,

Lxr=1909—m)p =10, D)br+ p(i P)br —mpp (73)

the @ term does not mix 7, and vz, so in the absence of the 11 term one would have the
freedom to introduce different covariant derivatives ) acting on left-handed and right-
handed fermions. We shall find that the same mechanism which allows us to give masses
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to the W and Z while keeping the photon massless will permit the generation of fermion
masses even though v, and g will transform differently under our gauge group. We
follow the conventions of Peskin and Schroeder (1995, p 700 ff).

We now let the left-handed spinors be doublets of an SU(2), such as

SRS

(We will postpone the question of neutrino mixing until the last Section.) The W is
introduced via the replacement

(74)

L

O = D,=0,—igT'W, , T'=71'/2 (75)

where 7¢ are the Pauli matrices and Wli are a triplet of massive vector mesons. Here we

will be concerned only with the W=, defined by Wt = (W} ¥ iW?)/v/2. The field W,
annihilates a W and creates a W, while W annihilates a W™ and creates a WT*. Then

Wi=W/5+W;)/V2and W2 =i(W}5 —W.)/v?2, so

1 w3 2WrF
W, = - K V2 K (76)
2 vaw, -wg
The interaction arising from (73) for a lepton [ = e, u, 7 is then
ﬁl(:l:/,il) = i [lle’)/“W;lL + Z_L’YMWN_VZL + hC] s (77)

V2

where we temporarily neglect the WS terms. Taking this interaction to second order
and replacing the W propagator (M3 — ¢?)~! by its ¢> = 0 value, we find an effective
interaction of the form (72), with

Gr _ o

N TR (78)

3.2 Charged-current quark interactions

The electroweak Lagrangian for interaction of W’s and quarks, before electroweak sym-
metry breaking, may be written in flavor-diagonal form as

Lint = %[WLWW;”D'L +he] | (79)

where U' = (v/,c,t') and D' = (d',¢',0') are column vectors decribing weak eigenstates.
Here g is the weak SU(2), coupling constant, and ¢, = (1 — 75)¢/2 is the left-handed
projection of the fermion field ¢ = U or D.

Mass terms in the Lagrangian connect left-handed and right-handed fermions: ma) =
m(Yrr + Yrr). These thus break electroweak symmetry, since the L and R fermions
have different transformation properties under weak SU(2) and the U(1) of weak hy-
percharge (to which the fields B, couple). Quark mixings arise because mass terms in
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Table 3. Parameters of KM matrices for n doublets of quarks.

n= 2 3 4

Number of parameters (n—1)? 1 4 9
Number of angles n(n —1)/2 1 3 6
Number of phases (n=1)(n-2)/2 0 1 3

the Lagrangian are permitted to connect weak eigenstates with one another. Thus, the
matrices My, p in
'Cm = _[UIRMUU,L+D’RMDDIL+h.C.] (80)

may contain off-diagonal terms. One may diagonalize these matrices by separate unitary
transformations on left-handed and right-handed quark fields:

RiMoLg = LiMERg = A . (81)

where
Q,L = LQQL§ Q,R = RQQR (Q =U, D) . (82)

Using the relation between weak eigenstates and mass eigenstates: U'y, = LyUy, D'f, =
LDDLa we find

U d
Ly = %[ULWWNVDL +he] ,U=|e¢l| , D=|s| . (83)
¢ b

where U = (u,¢,t) and D = (d, s,b) are the mass eigenstates, and V = L,Lp. The
matrix V' is just the Cabibbo-Kobayashi-Maskawa matrix. By construction, it is unitary:
V1V = VV?1 = 1. It carries no information about Ry or Rp. More information would be
forthcoming from interactions sensitive to right-handed quarks or from a genuine theory
of quark masses. Because of the unitarity of the matrix, the neutral currents to which the
Z9 couples will turn out to be flavor-diagonal: QT Q' = QI'Q, where I is any combination
of v# and vy*~s.

For n u-type quarks and n d-type quarks, V' is n X n and unitary. An arbitrary n x n
matrix has 2n? real parameters, but unitarity (VIV = 1) provides n? constraints, so only
n? real parameters remain. We may remove 2n — 1 of these by appropriate redefinitions of
relative quark phases. The number of remaining parameters is then n>—(2n—1) = (n—1)2.
Of these, n(n — 1)/2 (the number of independent rotations in n dimensions) correspond
to angles, while the rest, (n — 1)(n — 2)/2, correspond to phases. We summarize these
results in Table 3.

For n = 2, we have one angle and no phases. The matrix V' then can always be chosen
as orthogonal (Cabibbo 1963, Hara 1964, Maki and Ohnuki 1964, Bjorken and Glashow
1964, Glashow et al. 1970). For n = 3, we have three angles and one phase, which in
general cannot be eliminated by arbitrary choices of phases in the quark fields. It was
this phase that motivated Kobayashi and Maskawa (1973) to introduce a third quark
doublet. It provides a potential source of CP violation, serving as the leading contender
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Figure 8. Constraints on parameters of the Cabibbo-Kobayashi-Maskawa (CKM) matriz.
The plotted point at p = 0.21,n = 0.38 lies in the middle of the allowed region. (See text.)

for the observed CP-violating effects in the kaon system and suggesting substantial CP
asymmetries in the decays of mesons containing b quarks.

A convenient parametrization of V' (conventionally known as the Cabibbo-Kobayashi-
Maskawa matrix, or CKM matrix) suggested by Wolfenstein (1983) is

Vud Vus Vub 1- )\72 A A)‘3 (:0 - 7’77)
V=V Voo Vo | = - - )‘72 AN? . (84)
Vie Vis Vi AN (1 —p—in) —AN 1

Experimentally A ~ 0.22 and A ~ 0.85. Present constraints on the parameters p and 7
are shown in Figure 8. The solid circles denote limits on |Vys/|Ves| = 0.090 £ 0.025 from
charmless b decays. The dashed arcs are associated with limits on V4 from B* B’ mixing.
The present lower limit on B,—B, mixing leads to a lower bound on |V;,/V;,4| and the dot-
dashed arc. The dotted hyperbolae arise from limits on CP-violating K 0 %° mixing. The
phases in the CKM matrix associated with 1 # 0 lead to CP violation in neutral kaon
decays (Christenson et al. 1964) and, as recently discovered, in neutral B meson decays
(Aubert et al. 2001a, Abe et al. 2001). These last results lead to a result shown by the
two rays, sin(28) = 0.79 £ 0.10, where 5 = Arg(—V,4V,;/ViaV};)- The small dashed lines
represent 1o limits derived by Gronau and Rosner (2002) (see also Luo and Rosner 2001)
on the basis of CP asymmetry data of Aubert et al. (2001b) for B® — 7#T7~. Our range
of parameters (confined by 1o limits) is 0.10 < p < 0.32, 0.33 < n < 0.43. Similar plots
are presented in several other reviews (see, e.g., Buchalla 2002, Nir 2002, Schubert 2002,
Stone 2002 for further details), and an ongoing analysis of CKM parameters by Hocker
et al. (2001) is now incorporating several other pieces of data.
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3.3 Decays of the 7 lepton

The 7 lepton (Perl et al. 1975) provides a good example of “standard model” charged-
current physics. The 77 decays to a v, and a virtual W~ which can then materialize into
any kinematically allowed final state: e~ 7., u~7,, or three colors of @d’, where, in accord
with (84), d' ~ 0.975d + 0.22s.

Neglecting strong interaction corrections and final fermion masses, the rate for 7 decay

is expected to be
mp

(7~ —all) = 5GF192T = >2x107% eV (85)

corresponding to a lifetime of 7, ~ 3 x 107% s as observed. The factor of 5=1+1+3
corresponds to equal rates into e 7, p 7, and each of the three colors of ud'. The
branching ratios are predicted to be

1
B(t— = ve ) =Bt~ = vpp,)= gB(T* = vyud) =20% . (86)

Measured values for the purely leptonic branching ratios are slightly under 18%, as a
result of the enhancement of the hadronic channels by a QCD correction whose leading-
order behavior is 1 + ag/m, the same as for R in e*e™ annihilation. The 7 decay is thus
further evidence for the existence of three colors of quarks.

3.4 W decays

We shall calculate the rate for the process W — ff’ and then generalize the result to
obtain the total W decay rate. The interaction Lagrangian (77) implies that the covariant
matrix element for the process W (k) — f(p)f'(p') is

MO = a1 = 35)0p () (8) (87)

Here A describes the polarization state of the W. The partial width is

*

2MW Z M 47TM ’

pols

LW~ = ff)

(88)

where (2My,)~! is the initial-state normalization, 1/3 corresponds to an average of W
polarizations, the sum is over both W and lepton polarizations, and p* is the final center-
of-mass (c.m.) 3-momentum. We use the identity

. k. k,
> e (RN (k) = =g + 5" (89)
A w
for sums over W polarization states. The result is that
1 (m2 _ m/2)2
()\)2:2M2__ 2 I2_7 90

for any process W — ff', where m is the mass of f and m/ is the mass of f’. Recalling
the relation between G and ¢2, this may be written in the simpler form
GF M3 2p* p*? + 3EE'
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Here E = (p*? + m?)Y? and E' = (p*2 + m'®)/2 are the c.m. energies of f and f’. The
factor @y reduces to 1 as m,m’ — 0.

The present, experimental average for the W mass (LEP Electroweak Working Group
[LEPEWWG], 2004) is My = 80.425 + 0.034 GeV. Using this value, we predict I'(WW —
e V) = 227.6+ 0.3 MeV. The widths to various channels are expected to be in the ratios

2 2
€ Ve: W7 U ud s =1:1:1: 3[14—%] : 3[1—!—%] , (92)
so ag(M3,) = 0.120 £ 0.002 leads to the prediction Ty (W) ~ 2.10 GeV. [The Particle
Data Group (2004) review quotes this prediction as [y (W) = 2.0921 £0.0025 GeV.] This
is to be compared with the value (LEPEWWG 2004) obtained at LEP II by direct re-
construction of W’s: T’y (W) = 2.150+0.091 GeV. Higher-order electroweak corrections,
to be discussed in Section 5, are not expected to play a major role here. This agreement
means, among other things, that we are not missing a significant channel to which the
charged weak current can couple below the mass of the V.

3.5 W pair production

We shall outline a calculation (Quigg 1983) which indicates that the weak interactions
cannot possibly be complete if described only by charged-current interactions. We consider
the process v.(q) + 7.(¢') — W (k) + W~ (k') due to exchange of an electron e~ with
momentum p. The matrix element is

M) = 2G e ME6(¢') /) (K)(1 —75 ¢<* . (93)

For a longitudinally polarized W, this matrix element grows in an unacceptable fashion
for high energy. In fact, an inelastic amplitude for any given partial wave has to be
bounded, whereas M*A) will not be.

The polarization vector for a longitudinal W™ traveling along the z axis is
eV (k) = ([K],0,0, Bw) /My = k, /My, (94)

with a correction which vanishes as | k| — co. Replacing eV (k) by k, /My, using ¥ =4—
and ¢u(q) = 0, we find

MAX) \/_GFMWU ¢<X )1 —s)ulg) (95)
Z |M()"X)|2 _ 4G%M3V[8q/ . E(Al)q . 6()\/) _ 4q . qle()\’) . 6(/\')] . (96)

lepton pol.
This quantity contributes only to the lowest two partial waves, and grows without bound
as the energy increases. Such behavior is not only unacceptable on general grounds
because of the boundedness of inelastic amplitudes, but it leads to divergences in higher-
order perturbation contributions, e.g., to elastic vv scattering.

Two possible contenders for a solution of the problem in the early 1970s were (1)
a neutral gauge boson Z° coupling to vz and WTW~ (Glashow 1961, Weinberg 1967,
Salam 1968), or (2) a left-handed heavy lepton E* (Georgi and Glashow 1972a) coupling
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to v.W™. Either can reduce the unacceptable high-energy behavior to a constant. The
79 alternative seems to be the one selected in nature. In what follows we will retrace the
steps of the standard electroweak theory, which led to the prediction of the W and Z and
all the phenomena associated with them.

4 Electroweak unification

4.1 Guidelines for symmetry

We now return to the question of what to do with the “neutral W” (the particle we called
W3 in the previous Section), a puzzle since the time of Oskar Klein in the 1930s. The
time component of the charged weak current

J = Npyu Ly + Uy, VD (97)

where Ny, and Ly, are neutral and charged lepton column vectors defined in analogy with
U, and Dy, may be used to define operators

oW = / Pz, QO = i (98)

which are charge-raising and -lowering members of an SU(2) triplet. If we define Q3 =
(1/2)[Q™), Q)], the algebra closes: [@3, QF)] = £Q™). This serves to normalize the
weak currents, as mentioned in the Introduction.

The form (97) (with unitary V') guarantees that the corresponding neutral current will
be

1r- - _ _
JI(L?,) = 5 I:NL,-YMNL — LL/YMLL + UL"}/MUL - DL'YH-DL:I ) (99)

which is diagonal in neutral currents. This can only succeed, of course, if there are equal
numbers of charged and neutral leptons, and equal numbers of charge 2/3 and charge
—1/3 quarks.

It would have been possible to define an SU(2) algebra making use only of a doublet
(Gell-Mann and Lévy 1960)
U
a|
L

which was the basis of the Cabibbo (1963) theory of the charge-changing weak interactions
of strange and nonstrange particles. If one takes V,; = cosf¢, V,s = sinf¢, as is assumed
in the Cabibbo theory, the u, d, s contribution to the neutral current Jl(f’) is

U

(100)
Vudd + Vuss

L

1 _
Jﬁ(f’) lud,s = §[ﬂL’YuuL — cos® Ocdry,dr,

— sin? 0c5Lyust — sin ¢ cos OC(JL%sL +5v,d)] (101)

This expression contains strangeness-changing neutral currents, leading to the expectation
of many processes like K+ — ntvw, K — putu~, ..., at levels far above those observed.
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D
ChaS

Figure 9. Basis states for first excitations of a drum head. (a) Nodal lines at £45° with
respect to horizontal; (b) horizontal and vertical nodal lines.

It was the desire to banish strangeness-changing neutral currents that led Glashow et
al. (1970) to introduce the charmed quark ¢ (proposed earlier by several authors on the
basis of a quark-lepton analogy) and the doublet

¥E

In this four-quark theory, one assumes the corresponding matrix V' is unitary. By suitable
phase changes of the quarks, all elements can be made real, making V' an orthogonal
matrix with V,q = Vs = cos ¢, Vus = —Veq = sinfc. Instead of (101) one then has

C

(102)
chdd + ‘/css

L

J®

1 _
o ludys,e = §[aL'YuUL + cyuer — dpyudn — 5pyusn] s (103)

which contains no flavor-changing neutral currents.

The charmed quark also plays a key role in higher-order charged-current interactions.
Let us consider K°-K° mixing. The CP-conserving limit in which the eigenstates are K;
(even CP) and K, (odd CP) can be illustrated using a degenerate two-state system such
as the first excitations of a drum head. There is no way to distinguish between the basis
states illustrated in Fig. 9(a), in which the nodal lines are at angles of +45° with respect
to the horizontal, and those in Fig. 9(b), in which they are horizontal and vertical.

If a fly lands on the drum-head at the point marked “x”, the basis (b) corresponds to
eigenstates. One of the modes couples to the fly; the other doesn’t. The basis in (a) is like
that of (KO,FO), while that in (b) is like that of (K, K3). Neutral kaons are produced
as in (a), while they decay as in (b), with the fly analogous to the 77 state. The short-
lived state (K7, in this CP-conserving approximation) has a lifetime of 0.089 ns, while
the long-lived state (~ K5) lives ~ 600 times as long, for 52 ns. Classical illustration of
CP-violating mixing is more subtle but can be achieved as well, for instance in a rotating
reference frame (Rosner and Slezak 2001, Kostelecky and Roberts 2001).

The shared 77 intermediate state and other low-energy states like 7%, n, and 7’ are
chiefly responsible for CP-conserving K°-K' mixing. However, one must ensure that
large short-distance contributions do not arise from diagrams such as those illustrated in
Figure 10.
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Figure 10. Higher-order weak contributions to K 0_%° mazing due to loops with internal
u, ¢, t quarks.

If the only charge 2/3 quark contributing to this process were the u quark, one would
expect a contribution to Amg of order

Amgly ~ g* frmg sin® O cos® 0c /167° M}, ~ Grfami(g?/1672) | (104)

where fx is the amplitude for d5 to be found in a K°, and the factor of 1672 is character-
istic of loop diagrams. This is far too large, since Amg ~ I'x, ~ G% f2m3,. However, the
introduction of the charmed quark, coupling to —dsinf¢ + scosf¢, cancels the leading
contribution, leading to an additional factor of [(m? —m2)/MZ/]In(M2,/m?) in the above
expression. Using such arguments Glashow et al. (1970) and Gaillard and Lee (1974)
estimated the mass of the charmed quark to be less than several GeV. (Indeed, early
candidates for charmed particles had been seen by Niu, Mikumo, and Maeda 1971.) The
discovery of the J/1¢ (Aubert et al. 1974, Augustin et al. 1974) confirmed this prediction;
charmed hadrons produced in neutrino interactions (Cazzoli et al. 1975) and in ete”
annihilations (Goldhaber et al. 1976, Peruzzi et al. 1976) followed soon after.

An early motivation for charm relied on an analogy between quarks and leptons. Hara
(1964), Maki and Ohnuki (1964), and Bjorken and Glashow (1964) inferred the existence
of a charmed quark coupling mainly to the strange quark from the existence of the u—w,

doublet:
vy c
: leptons = : quarks . (105)
w” s

Further motivation for the quark-lepton analogy was noted by Bouchiat et al. (1972),
Georgi and Glashow (1972b), and Gross and Jackiw (1972). In a gauge theory of the
electroweak interactions, triangle anomalies associated with graphs of the type shown in
Figure 11 have to be avoided. This cancellation requires the fermions f in the theory to
contribute a total of zero to the sum over f of chlgf - Such a cancellation can be achieved
by requiring quarks and leptons to occur in complete families so that the terms

Leptons : (0)? G) + (=1) (—%) -1 (106)

2\? /1 N2/ 1 1
Quarks - 3[(5) (5)+(35) (—5)] =3 (107)
sum to zero for each family.

We are then left with a flavor-preserving neutral current Jl(f’), given by (103), whose
interpretation must still be given. It cannot correspond to the photon, since the photon
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Figure 11. FEzample of triangle diagram for which leading behavior must cancel in a
renormalizable electroweak theory.

Table 4. Values of charge, I3, and weak hypercharge Y for quarks and leptons.

Particle(s) @ I3, Y
Ver, 0o 1/2 -1
el -1 -1/2 -1
ur, 2/3  1/2  1/3
dy ~1/3 —1/2 1/3
€n -1 0 -2
UR 2/3 0 4/3
dr ~1/3 0 —2/3

couples to both left-handed and right-handed fermions. At the same time, the photon is
somehow involved in the weak interactions associated with W exchange. In particular,
the W+ themselves are charged, so any theory in which electromagnetic current is con-
served must involve a YW W™ coupling. Moreover, the charge is sensitive to the third
component of the SU(2) algebra we have just introduced. We shall refer to this as SU(2),,
recognizing that only left-handed fermions 1), transform non-trivially under it. Then we
can define a weak hypercharge Y in terms of the difference between the electric charge @)
and the third component I3z, of SU(2), (weak isospin):

Y
Q=lu+y - (108)

Values of Y for quarks and leptons are summarized in Table 4.

If you find these weak hypercharge assignments mysterious, you are not alone. They
follow naturally in unified theories (grand unified theories) of the electroweak and strong
interactions. A “secret formula” for Y, which may have deeper significance (Pati and
Salam 1973),is Y = 2135 + (B — L), where I3 is the third component of “right-handed”
isospin, B is baryon number (1/3 for quarks), and L is lepton number (1 for leptons
such as e~ and v,). The orthogonal component of I3z and B — L may correspond to a
higher-mass, as-yet-unseen vector boson, an example of what is called a Z'. The search
for Z' bosons with various properties is an ongoing topic of interest; current limits are
quoted by the Particle Data Group (2000).
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The gauge theory of charged and neutral W’s thus must involve the photon in some
way. It will then be necessary, in order to respect the formula (108), to introduce an
additional U(1) symmetry associated with weak hypercharge. The combined electroweak
gauge group will have the form SU(2), ® U(1)y.

4.2 Symmetry breaking

Any unified theory of the weak and electromagnetic interactions must be broken, since
the photon is massless while the W bosons (at least) are not. An explicit mass term in
a gauge theory of the form mQALA“i violates gauge invariance. It is not invariant under
the replacement (26). Another means must be found to introduce a mass. The symmetry
must be broken in such a way as to preserve gauge invariance.

A further manifestation of symmetry breaking is the presence of fermion mass terms.
Any product 17 may be written as

EQﬁ = (EL + ER)(QﬁL + @Z)R) = EL@Z)R + E}#/JL ) (109)

using the fact that ¥, = ¥(1 + v5)/2, ¥y = ¥(1 — 75)/2. Since vy transforms as an
SU(2), doublet but 1 as an SU(2); singlet, a mass term proportional to 1) transforms
as an overall SU(2);, doublet. Moreover, the weak hypercharges of left-handed fermions
and their right-handed counterparts are different. Hence one cannot even have explicit
fermion mass terms in the Lagrangian and hope to preserve local gauge invariance.

One way to generate a fermion mass without explicitly violating gauge invariance is
to assume the existence of a complex scalar SU(2),, doublet ¢ coupled to fermions via a
Yukawa interaction:

_ ¢+
Ly = —gy(Brdvn+he) , 6= [ ol (110)

Thus, for example, with ©; = (., e)r and ¥ = eg, we have
Ey,e = _gYe(ﬂeL¢+€R + éLgboeR + hC) . (111)

If #° acquires a vacuum expectation value, (¢°) # 0, this quantity will automatically
break SU(2); and U(1)y, and will give rise to a non-zero electron mass. A neutrino mass
is not generated, simply because no right-handed neutrino has been assumed to exist.
(We shall see in the last Section how to generate the tiny neutrino masses that appear
to be present in nature.) The gauge symmetry is not broken in the Lagrangian, but
only in the solution. This is similar to the way in which rotational invariance is broken
in a ferromagnet, where the fundamental interactions are rotationally invariant but the
ground-state solution has a preferred direction along which the spins are aligned.

The d quark masses are generated by similar couplings involving ¢; = (i,d), Vg =
dg, so that ~
ﬁy,d = —ng(ﬂL¢+dR + de)OdR + hC) . (112)

To generate u quark masses one must either use the multiplet

éz[ ¢ ]=i7'2¢* , (113)
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which also transforms as an SU(2) doublet, or a separate doublet of scalar fields
¢"°
¢ = [ e . (114)
With v, = (@,d);, and 1z = up, we then find
,Cy,u = —gyu(ﬂLﬁouL — Jyﬁ’uL + h.C.) (115)
if we make use of @, or
[,y,u = —gYu(ﬂLqﬁ'OuL + dL¢1_UL + hC) (116)

if we use ¢'. For present purposes we shall assume the existence of a single complex
doublet, though many theories (notably, some grand unified theories or supersymmetry)
require more than one.

4.3 Scalar fields and the Higgs mechanism

Suppose a complex scalar field of the form (110) is described by a Lagrangian

)\ 2
Ls=(0,9)'(0"9) = S(6'9) + T-o'o . (117)

Note the “wrong” sign of the mass term. This Lagrangian is invariant under SU(2); ®
U(1)y. The field ¢ will acquire a constant vacuum expectation value which we calculate
by asking for the stationary value of Ly:

0Ly _ tgy = &
o) TN

We still have not specified which component of ¢ acquires the vacuum expectation value.
At this point only ¢T¢p = [¢F]2 + |¢°|? is fixed, and (Re ¢+, Im ¢+, Re ¢°, Im ¢°) can
range over the surface of a four-dimensional sphere. The Lagrangian (117) is, in fact,
invariant under rotations of this four-dimensional sphere, a group SO(4) isomorphic to
SU(2) ® SU(2). A lower-dimensional analogue of this surface would be the bottom of a
wine bottle along which a marble rolls freely in an orbit a fixed distance from the center.

(118)

Let us define the vacuum expectation value of ¢ to be a real parameter in the ¢°
direction:

(¢) = [v/(i/?] : (119)

The factor of 1/4/2 is introduced for later convenience. We then find, from the discussion
in the previous section, that Yukawa couplings of ¢ to fermions ; generate mass terms
m; = gyiv/V/2. We must now see what such vacuum expectation values do to gauge
boson masses. (For numerous illustrations of this phenomenon in simple field-theoretical
models see Abers and Lee 1973, Quigg 1983, and Peskin and Schroeder 1995.)



Standard Model 33

In order to introduce gauge interactions with the scalar field ¢, one must replace 9,
by D, in the kinetic term of the Lagrangian (117). Here

CTWE Y
D,=0,—1g 2”—zg'53u : (120)

where the U(1)y interaction is characterized by a coupling constant ¢’ and a gauge field
B,,, and we have written g for the SU(2) coupling discussed earlier. It will be convenient
to write ¢ in terms of four independent real fields (£¢, ) in a slightly different form:

¢ = exp <Z§2UT) [%] : (121)
2

We then perform an SU(2);, gauge transformation to remove the £ dependence of ¢, and

rewrite it as
0
o= [ ot ] ) (122)

V2
The fermion and gauge fields are transformed accordingly; we rewrite the Lagrangian for
them in the new gauge. The resulting kinetic term for the scalar fields, taking account
that Y = 1 for the Higgs field (110), is

Lk = (Du0)"(D"9)
— a_i_g W/:j WL}_ZWlf _i_EJIB
2wl W 2 "

This term contains several contributions.

2

0
v ] (123)
V2

1. There is a kinetic term (8,n)(9"n) for the scalar field 7.

2. Terms involving the product of vd,n with single powers of gauge field operators
cancel one another.

3. There are WWn, BBn, WWn?, and BBn? interactions.
4. The v? term leads to a mass term for the Yang-Mills fields:

2
Lanyrs = 5 ACTVY + (W) + (@7 — B’} . (124)
The spontaneous breaking of the SU(2) ® U(1) symmetry thus has led to the appearance
of a mass term for the gauge fields. This is an example of the Higgs mechanism (Higgs
1964). An unavoidable consequence is the appearance of the scalar field 7, the Higgs field.
We shall discuss it further in Section 5.

The masses of the charged W bosons may be identified by comparing Eqgs. (124) and
(76):
(gv)?/8 = M7, /2 , or My = gv/2 . (125)

Since the Fermi constant is related to g/My, one finds
Gr_ ¢ _ 1
V2 o 8ME 202

, or v=2"'G;"? =246 GeV . (126)
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The combination ng’ — ¢'B,, also acquires a mass. We must normalize this com-
bination suitably so that it contributes properly in the kinetic term for the Yang-Mills
fields:

Liym = —EWZUW“”" — %B,L,,B’“’ , (127)
where
W:;U =9, W — 8,,W:; + gfijkWZWf ., B,=0,B,—-0,B, . (128)
Defining
cosf = J so that sinf = g (129)

(9> +g™)'7 (6> +g*)'?]
we may write the normalized combination ~ gWﬁ’ — ¢'B,, which acquires a mass as
Z, =W2cost — B,sinf . (130)

The orthogonal combination does not acquire a mass. It may then be identified as the
photon:
A, =By,cosf+W)sing . (131)

The mass of the Z is given by

(9°+ 9”0 _ M

< 5 o O My = My (6* + ¢*)/? /g = My [ cos b, (132)

using (129) in the last relation. The W’s and Z’s have acquired masses, but they are not
equal unless ¢’ were to vanish. We shall see in the next subsection that both g and ¢" are
nonzero, so one expects the Z to be heavier than the W.

It is interesting to stop for a moment to consider what has taken place. We started
with four scalar fields ¢+, ¢, ¢°, and ¢°. Three of them [¢*, ¢, and the combination
(#° — #°)/iv/2] could be absorbed in the gauge transformation in passing from (121) to
(122), which made sense only as long as (¢° + ¢)/v/2 had a vacuum expectation value v.
The net result was the generation of mass for three gauge bosons W+, W, and Z.

If we had not transformed away the three components &° of ¢ in (121), the term L 4
in the presence of gauge fields would have contained contributions W,0"¢ which mixed
gauge fields and derivatives of ¢. These can be expressed as

W,.o"¢ = 8H(W/A¢) - (8“W“)q5 (133)

and the total divergence (the first term) discarded. One thus sees that such terms mix
longitudinal components of gauge fields (proportional to 0*W,) with scalar fields. It is
necessary to redefine the gauge fields by means of a gauge transformation to get rid of
such mixing terms. It is just this transformation that was anticipated in passing from
(121) to (122).

The three “unphysical” scalar fields provide the necessary longitudinal degrees of free-
dom in order to convert the massless W* and Z to massive fields. Each massless field
possesses only two polarization states (J, = +J), while a massive vector field has three
(J, = 0 as well). Such counting rules are extremely useful when more than one Higgs field
is present, to keep track of how many scalar fields survive being “eaten” by gauge fields.



Standard Model 35

4.4 Interactions in the SU(2) ® U(1) theory

By introducing gauge boson masses via the Higgs mechanism, and letting the simplest
non-trivial representation of scalar fields acquire a vacuum expectation value v, we have
related the Fermi coupling constant to v, and the gauge boson masses to gv or (92+g’2)1/2v.
We still have two arbitrary couplings g and ¢’ in the theory, however. We shall show how
to relate the electromagnetic coupling to them, and how to measure them separately.

The interaction of fermions with gauge fields is described by the kinetic term Lk, =
1 IDy. Here, as usual, o
Tt Y
P=p—ig———igd5 B . (134)
The charged-W interactions have already been discussed. They are described by the terms
(77) for leptons and (83) for quarks. The interactions of W? and B may be re-expressed

in terms of A and Z via the inverse of (130) and (131):

W) =Z,cos0+ A,sinf , B,=—Z,sinf+ A,cosb . (135)
Then the covariant derivative for neutral gauge bosons is

Dlieutral =@ — iglsr(Z cos 0+ Asinf) —ig' (Q — I31)(— Zsinf+ Acosh) .  (136)

Here we have substituted Y/2 = (Q — I3). We identify the electromagnetic contribution
to the right-hand side of (136) with the familiar one —ie@ A4, so that

e=g'cos =gsinf . (137)

The second equality, stemming from the demand that I3;, A terms cancel one another in
(136), is automatically satisfied as a result of the definition (129). Combining (129) and
(137), we find

!

11 1
9 or ==t , (138)

Vg2 + 9" ¢ 9 9

the result advertised in the Introduction.

e =

The interaction of the Z with fermions may be determined from Eq. (136) with the
help of (129), noting that gcos@ + ¢'sin 6 = (g2 + ¢’*)"/? and ¢'sin 0 = (> + ¢'*)"/?*sin? 6.
We find

Blucutrar =9 — ieQ A = i(g” + ¢°)/* (I, — Qsin®0) 7 . (139)

Knowledge of the weak mixing angle 6 will allow us to predict the W and Z masses.
Using Gr/v2 = ¢?/8M?2, and gsinf = e, we can write

1/2
= l To ] 1 37.3 GeV (140)

V2Gr

if we were to use =" = 137.036. However, we shall see in the next Section that it is
more appropriate to use a value of o' ~ 129 at momentum transfers characteristic of
the W mass. With this and other electroweak radiative corrections, the correct estimate
is raised to My, ~ 38.6 GeV/sin @, leading to the successful predictions (7). The Z mass
is expressed in terms of the W mass by M, = My, / cos¥.

sin sin

1
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4.5 Neutral current processes

The interactions of Z’s with matter,
Lint,z = —i(92 + QIQ)I/ZE(I?,L - QSiHQ 0) Zvy (141)

may be taken to second order in perturbation theory, leading to an effective four-fermion
theory for momentum transfers much smaller than the Z mass. In analogy with the rela-
tion between the W boson interaction terms (77) and (83) and the four-fermion charged-
current interaction (72), we may write

My = AGrV2[P, (I, — Qsin® O)y"vu][5 (Lo — Qsin® B)yuppa] (142)

where we have used the identity (g2 + ¢'*)/8M% = G /+/2 following from relations in the
previous subsection.

Many processes are sensitive to the neutral-current interaction (142), but no evidence
for this interaction had been demonstrated until the discovery in 1973 of neutral-current
interactions on hadronic targets of deeply inelastically scattered neutrinos (Hasert et
al. 1973; Benvenuti et al. 1974). For many years these processes provided the most
sensitive measurement of neutral-current parameters. Other crucial experiments (see,
e.g., reviews by Amaldi et al. 1987 and Langacker et al. 1992) included polarized electron
or muon scattering on nucleons, asymmetries and total cross sections in ete™ — ptu~
or 7177, parity violation in atomic transitions, neutrino-electron scattering, coherent m°
production on nuclei by neutrinos, and detailed measurements of W and Z properties.
Let us take as an example the scattering of leptons on quarks to see how they provide a
value of sin?f. In the next subsection we shall turn to the properties of the Z bosons,
which are now the source of the most precise information.

One measures quantities
o(PA—=v+...)
oA — pt+...)

R, = o(vA—v+..)

T oWA—-p+..) Hp =

(143)
These ratios may be calculated in terms of the weak Hamiltonians (72) and (142). It is
helpful to note that for states of the same helicity (L or R, standing for left-handed or
right-handed) scattering on one another, the differential cross section is a constant:

do d_a 0y

d_Q(RR — RR) = dQ(LL — LL) = ir (144)
where o is some reference cross section, while for states of opposite helicity,
do do oo (14 cosfem. \’
d_Q(RL — RL) = d_Q(LR — LR) = y (f) (145)
Thus
0(RR — RR) =o(LL — LL) = 30(RL — RL) = 30(LR — LR) . (146)

We first simplify the calculation by assuming the numbers of protons and neutrons are
equal in the target nucleus, and neglecting the effect of antiquarks in the nucleon. (We
shall use the shorthand v = v, and 7 = 7,.) Then

o(vu — vu) + o(vd — vd) o(vu — vu) + o(vd — vd)

B, = o(vd = p~u) B = o(vu — ptd) ' (147)
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Table 5. Neutrino neutral-current parameters.

Experiment R, R; r
CHARM  0.3091 +£0.0031 0.390 + 0.014 0.456 4+ 0.011
CDHS 0.31354+0.0033 0.376 +0.016 0.409 £ 0.014
Average  0.3113 £0.0023 0.384 +0.011 0.429 4+ 0.011

One can write the effective Hamiltonian (142) in the form

1 = o1 = 5e)pl[a (1 - e ()
+ay* (1 + y5)uer(u) + dy* (1 — v5)der(d) + dy* (1 + v5)der(d)] (148)
e er(u) = % _ %sinQ 0, enu)= —g sin20 (149)
er(d) = —% + %sinQH en(d) = %sinQG . (150)
Taking account of the relations (146), one finds
R, = s + glen(w)l + (@ + glen(@P (151)
Ry = ler(u)]* + 3ler(u)]” + [ex(d)]” + 3[er(d))* (152)

where we have used the fact that o(vd — p~d) = 30(Pu — p*d). The results are

1 20 1 20
R,,:E—sin20+2—78in49, R,-,:§—sin29+gsin40 . (153)

If we consider also the antiquark content of nucleons, this result may be generalized
(Llewellyn Smith 1983) by defining

o(vN — u*X)

= . 154
" o(vN = u=X) (154)
Instead of (153) one then finds
1 ) 1 1
R,,:§—sin29+§(1+r)sin40 , R,;zi—sin29+g(1+—)sin49 : (155)
r

Some experimental values of R,, R, and r are shown in Table 5 (Conrad et al. 1998).
The relation between R, and R; as a function of sin? § is plotted in Figure 12. This result
has a couple of interesting features.

The observed R; i