

Visualization of Structure and Composition During Photocathode Growth

Klaus Attenkofer Henry Frisch Seon Woo Lee

Howard Padmore Theo Vecchione

John Smedley

Ilan Ben-Zvi

Miguel Ruiz Oses Liang Xue

Triveni Rao Susanne Schubert University of Chicago University of Chicago/Argonne National Lab. Argonne National Lab.

Lawrence Berkeley National Lab. Lawrence Berkeley National Lab.

Brookhaven National Lab. Brookhaven National Lab/SUNY Stony Brook SUNY Stony Brook SUNY Stony Brook

Brookhaven National Lab. BESSY/Helmholtz-Gesllschaft

The 4 `Divisions' of LAPPD

Hermetic Packaging

See Bob Wagner's talk

Electronics/Integration

See Henry Frisch's Talk

MicroChannel Plates

See (hear) Bob Wagner's & Ossy Siegmundtalk

Photocathodes

What is a Photocathode?

- Various cathodes are feasible
 - Only semiconductor cathodes are useful for detection applications
 - Multi-alkali are the the only cathodes available at 400nm and polycrystalline
- Focus on Multi-alkali cathodes:
 - Cost efficient thin film technology
 - Low dark current
 - High conductivity
 - Relative robust (unclear what destroys the cathode)

3

Goals and Activities

- Goals of the project
 - High Quantum Efficiency
 - Unclear what number but larger 50%
 - Response optimized at 400nm
 - First approach: low count rate application
 - High production yield
 - Low variation from batch to batch
 - Independent from "personal experiences" ; can be performed by control system
 - Low production cost
 - Short production cycle
 - Large parameter-acceptance
- Activities:
 - Basic sciences:
 - General understanding and modeling of growth process
 - Pre-selection of optimization parameter space
 - Recipe suggestions
 - Engineering
 - Reproducibility of evaporators
 - Development of process-control parameters
 - Designing process environment for optimized recipe

Basic Sciences

- Visualizing what happens during the growth:
 - Scattering experiments have proven very power full
 - To do:
 - Learning how to analyze data (especially diffuse scattering)
 - Automatic data analysis with automatic creation of rate constants
 - Improving evaporator system to allow "arbitrary" recipe
 - Reconstruction of spatial model
 - Simulation of thin film growth
- What we need from the material:
 - Single crystal in surface normal direction
 - Unclear what is the best lateral size
 - Minimizing impurity scattering (avoiding solid state alloying?)
 - Creating electric fields
 - Substrate effects
 - Doping
 - Layered structures
 - Influence of surface states on dark current

What Determines the Quantum Efficiency?

- In perfect Material (multi-alkali)
 - Original photoelectron direction is random (due to s-p character of valence & conduction band).
 - Cone determined by kinetic energy and surface barrier.
 - Phonon scattering helps to increase slightly the escape probability.

Maximal QE ~ 60%?

Why does Materials Quality Play a Role?

In the state of the second sec

Material composition determines:

- Band gap
- Work function
- Surface barrier

- Description of cathode functionality in Spicer-Three-Step-Model
 - Absorption, Transport, emission
- No scattering:
 - Photon energy is converted in kinetic energy of photoelectron
 - Electron will be emitted (as long as momentum perpendicular to surface is large enough)
- Phonon scattering
 - Small energy loss per scattering event
 - Randomizing direction
- Impurity/grain boundary scattering
 - Large energy loss per scattering event
 - Small probability to escape!

X-ray Scattering: A Perfect In-Situ Tool to Analyze Composition, Structure, and Chemistry!

- The elementary process
 - Each atom scatters X-rays in 4π
 - An ensemble of atoms:
 - Crystalline form produces "bragg"-peaks
 - Amorphous materials produce a "Pair-Distribution-Pattern"
- Single wavelength diffraction:
 - Single crystal produces typically only one reflection (or none)
 - A powder of single crystals produce Rings

What information is in the diffraction pattern

- 2-Theta position is a measure for the latticeplane distance
- Phi-position reflects orientation of the crystallites
- Width and shape of the reflection reflects crystallite size and/or strain of the crystal
- Detailed analysis of peak-shapes will produce electron-density map of sample

Light 11

The Experimental Setup **BNL**

- Experiments take place at BNL/NSLS I and ANL/APS
- Currently no dedicated insitu chamber available
- However: New chamber for BNL in commissioning and transportable evaporator under design

Light 11

Data-Processing

A Closer Look to Multi-Alkali Cathodes

ANT 11

1	1A 1 H 1.00794		д]	Pe	er	io	di	ic	T	al	bl	e	ША	IVA	VA	МА	и
2	Э Ці 6.941 11	4 9,11 13	e 218		0	f t	he	E	le	m	en	ts		5 B 10.811 13	6 C 12.011 14	7 N 14.0087 15	8 16.00 16	9 F 18.9
\$	Na 22.9896	24	lg 005	ШВ	IVB	٧В	мв	МΙВ		— MII -		• IB	'IВ	AI 27.98	Si 28.096	P 30.974	S 32.066	35.4
Ļ	19 K	20	a	SC	²² Ti	23 V	Z4 Cr	25 Mn	ze Fe	27 Co	zs Ni	29 Cu	30 Zn	Ga	32 Ge	39 As	Э4 Se	36 B
5	37 Rb	× 1	r	39 Y	4⊡ Zr	41 Nb	4Z Mo	43 Tc	44 Ru	45 Rh	45 Pd	47 Ag	48 Cd	49 In	50 Sr	si Sb)e	53
3	ss Cs	5	a	57 •La	72 Hf	73 Та	74 W	75 Re	76 0 5	77 Ir	78 Pt	79 Au	so Hg	81 TI	82 Pb	Bi	s4 Po	85 A
,	87 Fr	8 R	a	89 + Ac	104 Rf	105 Ha	106 106	107 107	108 108	109 109	110 110							

- Typical compound: SbA₃
- A: (Li), Na, K, Cs
- Various combinations are possible

What Can We Learn from the Past?

- The cathode of interest: CsK₂Sb
- Recipe from different communities
 - Various recipes are available
 - Recipe includes:
 - Process timing
 - Process temperatures (and ramps)
 - Evaporator design, pump rates, details of materials.....
 - Recipe depends on evaporator system
- Groups of recipes
 - Either Co-evaporation or sequential evaporation
 - Interlayer between glass and cathode or none

What Happens on an Atomistic Level?

- B33 (substrate)
 - How clean is clean
 - Is there any influence of surface states

Interlayer

- Chemical composition
- Roughness
- structure
- Conversion of Sb-Metal -> K₃Sb
 - Influence of Sb-Metal structure on final K₃Sb structure?
 - Final structure
 - Final composition
- Conversion of K₃Sb -> CsK₂Sb
 - Same questions as above

The Sb-Film and the Substrate

024

104- reflection:

001 alignment

Crystal-interface is most likely a combination of 02-2 and 001 crystallites

Some Properties of the two Crystallite Orientations

First layer between cathode and substrate:

- Both crystallites give similar growth conditions
- Ionic radius of K is larger as the "open" area -> no easy inter-diffusion
- Steps may play a major role for start of inter-diffusion
- Explains initial amorphous growth (after 6nm crystalline)
- In first order:
 - substrate can not influence the growth ratio
 - Two crystallite-types determine grain boundary condition
 - Grain-boundary are important for K-interdiffusion?

How can you get from Sb-Metal to K₃Sb

Filling the inner K sides

Filling the outer K sides

Moving the rest of the atoms to the FCC side

Sb-Metal surface

- Many Atoms have to be moved/ removed
 - Not clear where they go?
 - Does the film loose Sb atoms during K-Sb reaction?
- Inter diffusion of K will not be possible for all crystal planes!
- Is K-Sb bonding energy the "motor " of this transition?

How can you get from Sb-Metal to KSb

Removing of corner atoms

Rearranging Sb-atoms

Filling first K-position

Filling second K-position

- Fewer Sb-atoms have to be removed
- Strong Sb-Sb bonds (spiral)
- K-cage holds the crystal together

No transition between KSb and K₃Sb?

- No Transition between KSb and K₃Sb possible (wrong Sb-positions are occupied) without melting?
- Access K yields to lateral segregation not to a transition
- What drives the initial growth?

Characterization of the Full Cathode Growth

Sample 1

Sample 2

8 nm Sb deposition at 100 C 16 nm K deposition at 100 C Substrate heating to 300 C 18 nm Cs deposition at 100 C Substrate heating to 300 C 8 nm Sb deposition at 100 C 24 nm Cs deposition at 100 C Substrate heating to 300 C

16 nm Sb deposition at 30 C
63 nm K deposition at 100 C
Substrate heating to 300 C
16 nm Sb deposition at 100 C
40 nm Cs deposition at 100 C
Substrate heating to 300 C

Sample	Total Sb	Total K	Total Cs
Sample 1	16nm	16nm	42nm
Sample 2	32nm	63nm	40nm

- Growth temperature of Sb-film
- Sequence of growth
- Total thickness

Light 11

Initial Sb-Film

First K-deposition

Annealing of KSb-Compound at 300C

- KSb in both cases (independent from K-thick.); some systematic deviation (strain/vacancies?)
- Very strong texturing for sample 2
- May be Sb-metal phase (001-phase)

Light 11

Cs-Deposition

Thickness	Sb 8nm/ K 16nm /18ni	Sb 16nm / K 63nr	m/ Sb 16nm / 40nm Cs		
Annealing	100C	100C			
Temperature Sample	21	Sample 2			
CsSb KSb		ĸsb			
Sb					

- Some metallic Sb left in both cases
- No crystalline phase of alkali-Sb for sample 1
- KSb phase visible for Sample 2

Annealing of CsKSb-Compound at 300C

- In both cases mixture of AISb (AI=Cs/K)
- Unlikely a Al₃K-phase! (Al=Cs/K)

Light 11

Summary of In-situ Growth Experiment

Sb K Cs on Si X21 Oct 2011 Samp 3 1Date:10/5/2011 4:31:31 PMHV:15.0kVPuls th.: 17.27kcpsCenter Average

El	AN	Series	unn. C [wt.%]	norm. C [wt.%]	Atom. C [at.%]	Error [%]
С	6	K-series	0.54	0.56	1.35	0.9
0	8	K-series	3.69	3.85	6.90	1.1
Si	14	K-series	84.15	87.79	89.71	3.5
K	19	K-series	0.52	0.54	0.40	0.1
Sb	51	L-series	3.88	4.05	0.96	0.6
Cs	55	L-series	3.08	3.21	0.69	0.3

Total: 95.86 100.00 100.00

Observations:

Sb-metal film growth often strongly textured

- K-evaporation onto of Sb-metal yield to an amorphous material or glass (no long range order)
- Formation of islands are unlikely since this would favorite crystalline phases which cannot be detected!
- K-Sb mixture crystallizes at 300C (dynamics, activation energies are currently not known but can be extracted from existing data set)
- Crystallized K-Sb film is mainly KSb with strong texturing (orientation and crystal size can be concluded from existing data set)
- Cs behaves very similar to K
- Produced cathode was not homogeneous: largely a CsSb-phase and a crystalline non identified CsKSb-phase

Light 11

The Transition from Sb-Film to K₃Sb-film Surface Roughness during the Processing

Influence of Interface Layer

Commonly used materials:

Material	Crystal group	Lattice parameter	Match with K ₃ Sb	Band gap
Sb ₂ O ₃	Fd-3m	a=11.152A	yes	3.7-3.9eV
Sb ₂ O ₄	Fd-3m	a=10.26A	yes	?
MgO	Fm-3m	a=4.2117A	excellent	4.7-7.8eV
BeO	P6 ₃ mc	a=2.698A c=4.3772A	no	10.7eV
K ₃ Sb	F m -3 m	a=8.493		1.4eV
CsK ₂ Sb	F m -3 m	a=8.61		1.0-1.2eV

BeO is used to produce super-bialkali cathodes!

Combining Wide-Band-Gap Materials with Alkali Systems

The Next Steps

Instrumentation:

- Development of miniature evaporator system with defined growth conditions (high qrange, easy to transport, can be implemented in various beamlines)
- Data-quality improvement: calibration standard & background reduction
- Data-analysis, simulation, & theory:
 - Automatic data analysis using script languages
 - Quantitative analysis of texture information
 - Peak-width simulation based on strain, size and defect-structure
 - Data base for known compounds (alkali-Sb and oxides/fluorids)
 - Calculation of potential surface for Alkali inter diffusion (at least important areas)
- Program:
 - Influence of Oxide layer on growth and band bending
 - Understanding of KSb versus K₃Sb growth

Conclusion

- In-situ X-ray diffraction and reflectivity was applied and provides:
 - Compound composition during the processing
 - Structural information on crystallinity, size and orientation of crystals
 - Temporal evolution of these parameters
- Results of the presented experiment:
 - Alkali-evaporation at 100C substrate temperature yields to amorphous or glassy material
 - No transversal but lateral segregation is observed.
 - Crystallization can be achieved at 300C heating (necessary time can be extracted from data)
 - Grown cathode is more of the CsSb and some non-identified CsKSb-compound (not CsK2Sb)
 - Crystallinity (and texture) of the final film is independent from the Sb-structure but may depend on the KSb-crystallinity and the influence of the substrate layer?
- Next goals
 - Improve in-situ experiment so that many cathode recipes can be investigated.
 - Influence of the substrate on the crystallization process of the Alkali compound
 - Determination of activation energies and rate constants of the crystallization process (for the different compounds).